Thompson Automation Software TAWK Compiler

Chapter 15: Using the TAWK Debugger.

The TAWK Debugger is used to help you find problems in your TAWK programs.

Starting the Debugger.

The debugger itself is written in TAWK in a file called “debug.awk”. To use the debugger you compile this file with your TAWK
program. The debug.awk file should appear before any of your own program source files, to ensure that the debugger starts before
your program does. The debug.awk file is installed in the same directory as the TAWK compiler. You do not need to specify a
pathname for debug.awk because TAWK looks in this directory for program source files that are not found in the current

directory.

Suppose your program is in a file named “myprog.awk”. To debug your program using the “awk” program, type this:

awk -f debug.awk -f myprog.awk

To debug using the TAWK Compiler you would type the following. Since debug.awk is first on the TAWK Compiler command
line the output executable name defaults to “debug” (UNIX) or “debug.exe” (DOS, OS/2, Win32.) Use the —o option if you want
to select a different executable filename. To run the debugger you simply type “debug”, or whatever name you specified with the

- —o option.

awkc debug.awk myprog.awk
debug

Basic Debugger Concepts

The TAWK Debugger has two primary operational modes that correspond to the state of your program: your program can be
either running or stopped. When your program is stopped the debugger has control and displays your program source code and
allows you to select debugger commands from the debugger's menu-bar.

The debugger uses two virtual screens corresponding to the two primary modes. One of the screens shows the normal input and
output of your program and is displayed while your program is running. The other screen shows the main debugger window and is
displayed when your program is stopped. Only one of the screens can be shown on your display at a time. The debugger switches
the display back and forth between these two screens while you are debugging your program.

When your program is stopped, the main debugger screen is displayed. This screen has a menu-bar at the top, a main panel
displaying the source code of your program, and a blank line at the bottom that is used for user input. The debugger highlights the

program statement that will be executed next.

In order to see your program output when your program is stopped, you can switch from the debugger screen to your program
output screen using the “Show_output” option from the debugger menu-bar. Just press the “s” key when the debugger screen is
displayed. This option switches temporarily to your program output screen until you press any key to return to the debugger
screen.

If the debugger screen does not come up when you start the debugger, make sure that you put “debug.awk” first on the command
line. If that's not the problem, try pressing the Enter key. This may be necessary because the debugger stops your program just
before each statement in the program is executed. If your program does not include any BEGIN or INIT blocks but does have an
Automatic Input Loop, then TAWK will read the first line of program input before executing any statements in your program, so
the debugger screen will not appear until after the first line of program input is read in.

You communicate with the TAWK Debugger using the keyboard to select items from the menu-bar. You can't use the mouse.
The capitalized letter in each item indicates the key to press to select that item. You do not need to press the Alt or Shift keys, just
the letter key. Most of the items in the menu-bar bring up a sub-menu. To get rid of the sub-menu without selecting anything

press the Esc key.

Use the arrow keys and/or PageUp and PageDown keys to scroll through any window. For example, if your program source file
does not fit on one screen, you can use these keys to move up or down to look at the rest of the program source file, or left or right
to see program lines that are longer than 80 characters.

_T72 -

Chapter 15 Using the TAWK Debugger.

The bottom of the debugger screen shows function key definitions. These commands can also be selected using the menu-bar, but
it is faster to use the function keys. For example, the “Trace” command can be selected from the “Run” menu or can be selected
by pressing function key F1.

Tracing Your Program
There are several ways to watch your program execute one statement at a time:

Trace This command executes exactly one statement from your program. It will trace into functions. If you are stopped on
the pattern part of a pattern-action block, and the pattern matches, this command will cause the debugger to trace into
the actions in the block.

Step This command executes the next statement from your program, but skips over function calls. If the statement to be
executed calls a function, the debugger will execute the entire function in a single step without showing you each
statement executed (unless a “Stop Point” is encountered.) If you are stopped on the pattern part of a pattern-action
block, this command will go on to the next pattern, rather than tracing into the actions in the block.

Forward This command is like “Step”, but it will not step backwards in your program, only forwards. In other words, it will
continue execution until it encounters a statement that is forward (or below) the current program location. This is
useful when you are debugging a loop and you want to get out of the loop. The Forward command can be used to
continue execution until the loop is finished and the statement after the loop is about to be executed.

Animate This command “animates” your program by executing one statement, waiting a second, then executing the next
statement, waiting another second, etc. It continues until you press any key to stop it. You can change the delay time
between statements in the “Options” menu.

Go When you select “Go” your program starts running. It will continue to run until a “Stop Point” is encountered or until
the program ends.

The Trace and Step commands have a special meaning when debugging a pattern-action statement. For example, consider the
following program:

/pattern/ {
statements

}
The debugger will stop with the line containing /pattern/ high-lighted. To debug the statements, choose the Trace option. To
continue to the next pattern-action block, choose the Step option.

Stop Points

Sometimes you want to debug only a small part of your program and do not want to trace through every statement. To do this start
the debugger and place a “Stop Point” at or near the place you want to debug, then select “Go” to let your program execute until
the Stop Point is encountered. To place a Stop Point select the “View Stop Points” option from the “Run” menu. This brings up a
window showing all the currently set Stop Points. You can set as many Stop Points as you want. There are two kinds of Stop
Points. If a Stop Point is set on a function, then the debugger will stop before any statement in the function is executed. The
debugger will continue to stop before each and every statement in the function until you delete the Stop Point. You can also place
a Stop Point on any particular statement in your program source code, and TAWXK will stop before executing that statement. Be
carcful because TAWK does not check that the line number is valid when you enter it. If you enter a Stop Point on a line that does
not have any statements on it then the Stop Point will have no effect.

Viewing Variables
There are several ways to view or modify the contents of variables in your program.

1) You can view any specified variable using the “Varjables” menu “View” option. This allows you to enter the name of any
variable, including local variables in the current function, and to view or modify the contents of the variable.

2) You can view a list of all global variables, both global and module local variables, or only variables defined in the current
source file (module) by selecting the appropriate option from the “Variables” menu. Notice that these lists of variables do not
include local variables defined in the current function.

-73-

Thompson Automation Software TAWK Compiler

3) You can watch variables by selecting the “Variables” menu “View” option. Watched variables are displayed in a separate
window that is displayed whenever your program is stopped. You can watch any type of variable, including function local
variables. If you specify a function local variable name the TAWK debugger will display the variable's value whenever you
are in that function, and will display "<not available>" when the variable is not defined in the currently executing function.

4) You can see a list of the function local variables in any particular function by using the “Calls” menu. This brings up a list of
the currently active functions. Select the function whose variables you want to view by using the arrow keys to highlight the
function and the Enter key to select.

Module local variables are given unique names in the TAWK Debugger by prepending the file name in which they are defined,

separated by a colon. For example, local variable x defined in file: myfile will be displayed in the list of all variables as

"myfile:x".

TAWK's display of variables has some useful features:

Integers are displayed in both decimal and hexadecimal format. If a string is one character long, then the ASCII integer code is

displayed along with the string. If a string is too long to fit on the screen, use the left and right arrow keys to shift the display left

or right to see the rest of the string. The Ctrl-left and Ctrl-right arrow keys move faster. If the variable holds an array, then

“<array>" is displayed. To see the contents of the array, move the highlighted bar to that variable using the arrow keys, and then

choose "Expand_array" (press the "e" key.) This will show you the contents of the array. If a variable is uninitialized, the value

“<uninitialized>" is displayed. If a variable is a special type, for example, a file descriptor, the special type is included after the
value, for example, "<fileid>". See the typeof function for a list of the special types that may be shown.

Leaving the Debugger
When your program ends the debugger quits. If you want to do some more debugging, you must restart the debugger again.

You can press the Control-C key to quit the debugger if you lose control of your program. You lose control of your program if
you use the “Go” option and it never hits a Stop Point, in which case your program just runs to completion.

You can also leave the debugger using the “Quit” option from the debugger menu.

-4 -

P -

"“@‘@f@@@@@@@@%@@wm@@@é@mmmmm@MMMM@&mm,.Mm,,.m

Chapter 16 Calling External Functions

Chapter 16: Calling External Functions

TAWK programs can call functions written in other languages. These functions are called "external” functions, because they are
external to the TAWK program. These functions are declared using an extern declaration. Once they are declared, external
functions can be used just like any other functions in TAWK. Note that your TAWK program can call functions written in another

language, but not vice versa.

TAWK uses two different mechanisms for linking to external functions. Which mechanism you will use depends on the operating
system you are using:
1) Dynamic Linking:

This is used for all versions except DOS. The external functions are located in a Dynamic Link Library, or DLL, which is

located and linked in when your TAWK program runs. All you have to do is provide the appropriate “extern” function
declarations in your TAWK program. You do not need to own a C or C++ compiler, unless you want to write your own DLL

functions. Only 32-bit DLLs are supported. Older Windows 3.1 DLLs will not work.

In general, you can call any functions defined anywhere in the operating system. This gives you access to vast resources.
Under Win32, you can invoke almost any function in the Win32 API (Application Programming Interface), including dialog
box creation. For examples, look in the examples subdirectory, or look at some of the TAWK libraries, such as socket
support, that are implemented by calling DLLs. Unfortunately, the documentation for these resources is also vast, and well
beyond the scope of this book. Additional information is available direct from operating system vendors. As of this writing,
the Win32 API is available on CD-ROM as the "Microsoft Developer Network". Basic UNIX documentation is available in
many bookstores: ask for a "UNIX Programmer's Reference Manual”.

2) Static Linking:
This is used for the 16-bit DOS version of TAWK. To perform static linking, you must own a C compiler that is supported by
TAWK for static linking. The TAWK Compiler uses the linker supplied with your C compiler to statically link the C object
or library files that you provide with object code and libraries that are provided with the TAWK Compiler.

Notes: The OS/2 version of TAWK includes both 16-bit and 32-bit runtime programs. The 32-bit version supports dynamic
linking. The OS/2 16-bit runtime does not support external functions. The 32-bit DOS version of TAWK also does not
support external functions.

Declaring External Functions in TAWK

To call an external function from TAWK, you must include an extern declaration for the external function in your TAWK
program. An extern declaration tells the TAWK compiler the name of the external function, and the number and types of the
arguments required for the function. Extern declarations may appear in any TAWK source file, and become globally defined
names for the entire TAWK program. Extern declarations can also be placed in the TAWK library, to be used if needed. Each
global name in TAWK can have only one meaning, so predefined TAWK function names can not be declared extern, nor can an
extern name also be used as a global TAWK function or global variable. The same extern declaration may be duplicated in
multiple files, as long as all such declarations are identical.

Extern declarations appear outside of any function or program block. They may appear each on a separate line, or may be
separated or terminated by semi-colons. The syntax for an extern declaration is:

extern [ret_typel fun _name(ltype [namell, ...11)

The extern keyword is required.

The ret_type specifies the type of the return value from the function. If no ref_type is specified, int is assumed.

The rypes and names within parentheses are optional, and specify the types and names of the function parameters. The name is
ignored, except that it may not be a TAWK reserved word. The ref_type and function parameter zfypes may be any of the
following types: (Brackets indicate optional stuff, and | indicates multiple possibilities.)

275 -

Thompson Automation Software TAWK Compiler

External Function Parameter and Return Types

signed unsigned] char [*][*]
signed unsigned] short [*][*]
signed unsigned] int [*][*]
signed unsigned] long [*][*]
float [*][*]

double [*][*]

struct anything *[*]

string *

void [*][*]

e e —

The meanings of the base types are as follows:

Iype Meaning

char 8 bit character.

short 16 bit integer.

int Either 16 bit or 32 bit integer depending on the operating
system.

long 32 bit integer.

float Single precision floating point number. Note that some

C compilers automatically use double even when a
function is declared as requiring a f1oat. If this is the
cdase, you must use double, not float.

double Double precision floating point number.

string Special TAWK data type allowing you to pass binary
data, possibly containing 0 characters, between TAWK
and the external function. The string format changed
between TAWK version 4.1 and version 5.0, to support
strings longer than 64K bytes. The documentation for
the string data type can be found in the file "errata.txt”
included with the TAWK compiler.

void If this appears as a ref_type, it means the function has no
return value. As a special case, the entire parameter list
may be specified as "void", for example:
extern foo(void)
means that function foo has no arguments, and is like:
extern foo ()

The signed and unsigned keywords govern whether the corresponding value is signed or unsigned. The default is signed.
When an external function parameter is a char or short, the value must be widened to the size of an int before the function is
called. If the parameter is signed, the value is sign-extended, meaning the original sign of the value is preserved. If the parameter
Is unsigned, the value is zero-extended, meaning that additional zero bits are added on the left as necessary to widen the value to
the size of an int. The signed/unsigned characteristic affects the range of values representable by each data type. The ranges are;

Parameter Type Range of Values

signed char -128 to 127

unsigned char 0 to 255

signed short -32768 to 32767
unsigned short 0 to 65535

signed long -2147483648° to 2147483647
unsigned long 0 to 4294967295

-76 -

o

@% . @% @% tea s e & A M o v o e

T gy e s S@ER ey T e h e Ao g R e e A QR o Qs

- my @ W W Wy

ER R VW SEme

W MY Wy W@ Ay W Wy aEme

¥4

Chapter 16

Calling External Functions

The optional trailing * indicates a pointer. The interpretation of what a pointer means depends on the type of thing pointed to.

Type

char*

short *
int *
long *
float *
double *

void *
struct name *
type *

Automatic Conversions

Values in TAWK can be numbers or strings (or other types, like arrays.) However, the parameters to external functions must have

Meaning

Pointer to an array of characters terminated by a 0
character. If an external function returns a char*,
then it must return either a NULL (0) value, or a
valid character pointer. If the value is non-NULL,
TAWK copies the character data immediately after
the function returns, so the data MUST be 0
terminated, so that TAWK can find where it ends.

These may appear only as function parameters, not as
a ret_type. The corresponding function parameter is
assumed to be pass-by-reference. TAWK will pass a
pointer to an appropriately sized argument. The
external function can modify this value before it
returns. If the argument to the function call was a
simple variable (not a constant, array, field, or built-
in variable) then the changes will be applied to that
TAWK variable. If the argument to the function call
was not a simple variable, TAWK passes a pointer to
a temporary location containing the value specified in
the function call, but changes made by the external
function are ignored.

NOTE: An alternate interpretation of this syntax is
"pointer to array of type". For example, short*
could mean a pointer to an array of short values. If
this is the correct interpretation, you must use void*
instead, and create the array to be passed to the
external function using the TAWK pack function.

These are used to signify pointers of any other type.
The type may be any of the other types, above. All
three syntaxes mean the same thing to TAWK: a
generic pointer. TAWXK does not have an automatic
way of dealing with these types of pointers, so it is
the user’s responsibility to pass a pointer of the
appropriate type. The pack function is typically used
to create the appropriate structure.

a specific type, as specified in the extern function declaration. Therefore, TAWK must handle the problem where the value
passed to an external function is not of an appropriate type. The following table specifies how TAWK handles this.

Declared
parameter type

If the actual parameter If the actual parameter
value is a string value is a number

char

passes the first character passes the number,
of the string. truncated to 8 bits.

-7 -

Thompson Automation Software

TAWK Compiler

int,
short,
long

char *

void *

passes the value of the passes the number,
string interpreted as a truncated if necessary.
number, for example

"10" simply passes 10.

passes a pointer to the If the value is 0, passes

string. NULL. Otherwise, an error
message is printed.

passes a pointer to the passes the number, which is

string. assumed to be a pointer to

the appropriate type. Your
system will probably crash
if it is not.

In all cases above, if the parameter is an array, an error message is printed. In all cases above, if the parameter is an uninitialized

value, a 0 value is passed.

If you are using dynamic linking, the ret_type may additionally contain linkage keywords chosen from the following:

Type
cdecl

stdcall

winapi

system

Meaning

Use C calling sequence. (the default) This calling
convention pushes parameters in right-to-left order, and
the calling function cleans up the stack. The function
names are decorated in order to distinguish different types
of calling conventions. The cdecl convention prepends an
underpar ("_") to the name.

Use Win32 "Standard Call" calling sequence. This
calling convention pushes parameters in left-to-right
order, and the called function cleans up the stack. This
convention decorates the function name by prepending an
underbar and appending an at-sign ("@") followed by the
number of bytes of arguments required by the function.

Use for Win32 API functions. The winapi calling
convention is similar to stdcall, but does not use stdcall
function name decoration. Additionally, if the function
can not be found in the DLL at runtime, TAWK appends
an "A" to the function name and looks for that function in
the DLL. The "A" is tried because many functions in the
Win32 API have two versions to support two different
character sets: The "ANSI" character set and the
"UNICODE" character set. The ANSI versions of the
functions all have an "A" appended to their name.

Use OS/2 "_System" calling sequence. Most OS/2 API
functions use this convention.

-78 -

AR

%@@@@@@%@@@@@@@@m@@m@mmmm&mmmmmmmmmmmmmmmm

Chapter 16 Calling External Functions

dll "dllname" Specifies the DLL filename. The dll keyword is followed
by a string enclosed in double quotes that specifies the
DLL filename If the dll keyword is not provided, TAWK
searches for the function in all the DLL filenames
specified in the DLLS variable, which is initialized to the
list of the most common DLLs used on each operating
system.

name "xxx" Specifies an alternate function name. This allows you to
map the function name as known in the TAWK program
to a different function name in the DLL. For example:

extern name "xyz" foo()

When the TAWK program uses function foo(), the actual
external function called will be xyz(). This can be useful
when an external function name conflicts with a TAWK
built-in function name. The name specified in quotes is
used as-is, without any checks for naming conflicts or
validity. As a special case, in OS/2, the name can be of
the form "#nnn", where nnn is the decimal ordinal
number of the function in the library.

Here are examples of dynamically linked extern functions. If the Dynamic Link Library "mydIl.dll" contains function "foo", it
could be declared as any of:

extern cdecl dll "mydll" foo({)
extern cdecl dll "mydll" name "foo" alias()

In the above example, the TAWK function "alias" will actually call the C function "foo" in DLL: "mydll.dll".

Examples of TAWK statically linked extern declarations, to be used with DOS. A ret_type is not specified, because cdecl is
assumed:
extern int max(int,int)

extern double loglO(double) ;
extern int rename(char * ,char*)

Incorrect Examples:
extern print(char*) # "print" is a TAWK function

extern if() # "if" is a TAWK keyword.

The following will not work as you might expect. TAWK attempts to make a copy of the return value of malloc as soon as the C
malloc function returns. Since the data malloc returns is usually uninitialized, this ends up returning a random length string
containing garbage, depending on where (and whether) a nul character was found in the data. If no nul character is found, this will

crash.

extern char *malloc{int) # WRONG!

Using Dynamic Linking

Dynamic linking is used by the Win32 (Windows NT or Windows 95), 0S/2 (32-bit) and UNIX versions of TAWK. You don’t
have to do anything special to use dynamic linking. If you call an external functions that you declared with an extern declaration,

TAWK will use dynamic linking. You don’t even have to compile your program: the awk interpreter program can also call
external functions dynamically.

=79 -

Thompson Automation Software TAWK Compiler

Using Static Linking (DOS Version)

To perform static linking, you must own and install one of the C or C++ compilers supported by the TAWK compiler. You must
do this even if you are using third party libraries and not writing any C code yourself, because when building combined TAWK/C
programs, TAWK uses the linker and the C libraries provided with your C compiler. You must choose a C compiler from the list
of C compilers supported by TAWK because there are subtle differences in the underlying C libraries from different C compiler
vendors, so they are not interchangable. TAWK comes with customized libraries for each C compiler that is supported.

The steps in building a statically linked combined TAWK/C program are as follows:

1) Prepare your TAWK code. You must place an “extern” declaration in your TAWK program for each function you plan to
call that is external to TAWK, either in a C library or an object module.

2) Verify that the external functions you plan to call use appropriate linkage and model. For static linking, the external functions
must be large model ("far") and use the “C” calling convention.

3) Invoke the TAWK Compiler to create the executable program. For static linking, the TAWK Compiler will compile your
TAWK code and link your TAWK program with your object and/or library files.

Preparing your C code for Static Linking.

You may compile C source files into object (.obj) files or use library files containing compiled object modules. There are three

requirements:

1) You must use the proper memory model when you compile your code or select third-party libraries. This varies with the
compiler vendor and operating system. For 16-bit compilers (used for DOS) we currently support the "large” or "huge”
memory models.

2) The TAWK libraries were compiled using the default floating point options. If your object code uses any floating point, then
it must use a compatible floating point option. Simply not specifying a special floating point option is the best idea.

3) The functions you wish to call from TAWK must use the C calling convention. Modern C compilers support a variety of

different calling conventions, including "C", "C++", “pascal”, "fastcall”, "stdcall", etc. The calling convention used by the C

or C++ compiler can be affected both by keywords in the C or C++ source code, and by command line options that select a
particular calling convention for the entire program.

ANSI Compatible C++ compilers support a compiler indendent method to specify the linkage convention using the

extern ""C" keywords. Note that this method is new in C++ and will not be recognized by an older C compiler. Here is an

example written in C++:

/* Here is the C++ function prototype: */
extern "C" char * testit(void);

/* And here is the function: */
extern "C" char * testit(void) ({
return "hello world"

}
If you have an older Borland or Microsoft C (not C++) compiler, you can probably use the _edecl keyword to ensure C
linkage. There may be either one or two underbars in the "cdecl" keyword, depending on your compiler. For example, here is
a function written in C (not C++) that can be called from TAWK:

/* Here 1s the C function prototype: */
extern char * _cdecl testit(void);

/* And here is the function: */
char * _cdecl testit(void) {
return "hello world"

}

-80-

mW*&WWMWW@WWWWWWW@'W@mewwwww@wwwwwwwwwwwwwwww

Chapter 16 Calling External Functions

Calling the TAWK Compiler for Static Linking.
The TAWK Compiler will compile your TAWK code and link your TAWK program in a single step. You must specify the
following on the TAWK Compiler command line:

a) The names of the TAWK source files, the object files, and the library files that you want to be compiled together. The
filename extension must be specified with object and library files, so they will not be confused with TAWK source files.

For example: mfile.obj or graphics.lib.

b) An appropriate —x option to indicate that you want to create a combined TAWK/C program. Note that the —x option is
optional if you specified object or library files on the command line, because if you did so, the TAWK compiler knows it

has to call an external linker.
c) An appropriate —c option to specify the C compiler you are using.

The TAWK Compiler automatically performs these steps:

D The TAWK source files are compiled, and three files are created: an object file; a linker response (.Ink extension) file that
is the input to the linker in step two; and a TAWX executable (.ae) file that contains additional TAWK code needed in step

three below.

2) The TAWK Compiler calls your linker using the linker response (.Ink) file, which combines:

a) The TAWK object file;
b) Your object and library files, if any;
¢) The C libraries supplied with your C compiler.

3) The TAWK Compiler then calls the awkbind program to combine the TAWK executable (.ae) file with the regular
executable (.exe) file created by the linker, to create the end product: a stand-alone executable file. The awkbind program

is included with the DOS version of the TAWK Compiler.
Specifying the Compile Mode with the —x Option.
There are two ways the TAWK Compiler can create combined TAWK/C programs, controlled by the —x option as follows:
-x] Causes the TAWK Compiler to automatically call the linker. This option is the default case if you specify an object or

library file on the TAWK command line and no other —x options. Note that you need not specify any object or library files
on the command line if the C functions you wish to call are defined in the default C library supplied with your compiler.

Causes TAWK to create an object file that you must link yourself. The name of the object file is the same as the TAWK
output file, but with the .obj filename extension. The TAWK compiler places additional TAWK code in a separate file with
the same name but with a .ae extension.

After running your linker to create an .exe file, you can call the awkbind program yourself to combine the .ae file with your

executable file to create a stand-alone executable file. The awkbind program takes one argument, which is the basename
(without extension) of both the executable and .ae files. Both the executable and .ae files must be present in the same

directory.
Specifying a C Compiler with the —c Option:

The TAWK Compiler —c option specifies which C compiler to use. The TAWK Compiler uses libraries tailored for the specific
C compiler and attempts to call the linker supplied with that C compiler. The possibilities are:

—cm Microsoft C or Quick-C version 7 or higher, or Microsoft
Visual C or C++ (This is the default)

—cmbh Microsoft C version 6;

) Borland or Turbo C or C++ version 3 or higher.

The above list was up-to-date at the time this manual was printed. Different C Compilers have different specific oddities, which
are listed below. See the on-line readme file that accompanied your TAWK compiler for the latest information. Thompson
Automation Software also sometimes does custom ports using other C compilers or operating systems on request.

.81-

Thompson Automation Software TAWK Compiler

Using Microsoft C

You can use Microsoft C version 6 or higher, or Microsoft Visual C or C++. When you install the Microsoft C compiler you must
install the large model libraries and must build the “combined libraries”. The Microsoft combined library name is “Ilibce.1ib”, and

this library must be installed properly to create combined TAWK/C programs.

The Microsoft linker is creatively named: “link.exe”. Former versions of DOS included a linker with the same name which is
obsolete. Make SURE your PATH is set so you are getting the Microsoft linker.

The Microsoft linker requires the LIB environment variable be set to the directory containing the Microsoft libraries, so you must
set it before calling the TAWK Compiler. You do not need to worry about the Microsoft linker finding the TAWK libraries: the
TAWX Compiler furnishes their full path name to the Microsoft linker.

Using Borland or Turbo C:

The TAWK Compiler supports Borland C and Turbo C for DOS version 3 or higher. Specify the —~cb option to the TAWK
Compiler.

Note: We had a problem report that Borland C version 3.0 will not link TAWK programs when 386MAX is installed. To solve
this problem uninstall 386MAX or upgrade your Borland compiler.

Debugging with Microsoft CodeView:

This discussion applies to statically linked programs for DOS or OS/2. You can not use Microsoft codeview on a TAWK program
created by the awkbind program, or created with the —x1 options which automatically call the awkbind program. The reason for
this is that the awkbind program places the executable TAWK code in the same position in the executable file that codeview
normally uses to store debugging information. To use codeview on a compiled TAWK program, you must follow these steps:

1) Compile the TAWK program using —xo, which creates an output .obj file, a .ae file containing TAWK executable code, and a
Ink linker response file.

2) Run the Microsoft linker by hand.

3) The resulting executable program can be run by specifying the name of the .ae file as the first argument to the program. The
other program arguments come after the name of the .ae file. The name of the .ae file is removed from the program's ARGV

array, so the program executes normally.

For example, to debug the combined program consisting of doit.awk and cfile.c:

Create cfile.obj:

¢l -c -AL -Zi cfile.c

Create doit.obj, doit.ae, and doit.lnk:

awkc -xo doit.awk cfile.obj

Run the linker with codeview support enabled:
link /CODEVIEW @doit.lnk

Invoke the codeview debugger:

cv doit.exe doit.ae

Using RAWMODE:

The TAWK RAWMODE variable works differently in a statically linked combined TAWK/C program. In normal TAWK
programs that are not linked with C, TAWK does all text mode translation, and RAWMODE works perfectly. In a combined
TAWK/C program, the underlying C library is used to perform text mode translation. Specifically: changing the RAWMODE
variable in a combined TAWK/C program causes TAWK to make an appropriate setmode() call to the underlying C library for
stdin, stdout, stderr, and all files opened in TAWK, except those that were opened with fopen() with a specific text ("t") or binary

("b") mode.
The problems with text mode translation in a combined TAWK/C program (or any C program) are as follows:

1) When changing the mode translation for an input file, the new mode does not take effect until any currently buffered input for
the specified file has been read. You can, however, reliably change the mode before you read any data from the file.

2) The least significant bit of the RAWMODE variable is ignored. This is the bit that controls how Control-Z is handled for
input files. The C libraries do not support this feature.

- 82-

P e

Chapter 16 Calling External Functions

Memory Allocation:

In the DOS operating system, low memory (the first 640K or so of memory) is a limited resource that is shared by all programs.
In a combined TAWK/C program, both the TAWK and the C parts of the program require some low memory. By default, TAWK
uses malloc() to allocate memory. When malloc() starts returning NULL, TAWK starts using XMS, EMS or disk space.

The Alternative Allocation Method:

TAWK has an option to allocate memory directly from DOS. This is what it does in normal TAWK programs that are not linked
with any C code. Using this method has the following advantage: the TAWK system() and spawn() function calls can release this
memory back to DOS during the system call to make more low memory available for the program you are attempting to execute,
and this is often the difference between being able to call system() successfully or not.

Using the Alternative Allocation Method:

To make AWK allocate memory directly from DOS, simply place the following anywhere in your C code:

int awk_xmalloc = 1;

Borland C users take note: This alternative method is not recommended if your program needs to use malloc(), calloc() or etc.
The Borland malloc() function does not coexist peacefully with programs that allocate memory directly from DOS. The Borland
malloc() function is not able to allocate any new memory from DOS, after the program allocates any memory directly from DOS.
This is a documented feature of Borland C and therefore not a bug.

Reserving memory for your C program’s use:

If TAWK uses up all of low memory using malloc, there will be none available for your C program’s use. However, TAWK
allocates low memory only as it needs it, so for most programs with modest memory requirements, you do not need to worry about
it.

You can tell TAWK to reserve a portion of low memory for use by your C program or for use by the system() or spawn()
functions. To do so you set the C variable awk_heapkreserve to the amount of memory in Kilobytes that you want reserved. For
example, including the following line in your C program:

int awk_heapkreserve = 100;

The above will cause the TAWK memory allocator to try to leave the last 100K bytes of main memory alone, thus reserving it for
use by your C program or for spawning external programs. This number is advisory only: if TAWK can not continue without
using this memory, it will allocate it anyway, but it will try to use XMS/EMS memory or disk space first. If you reserve too much
heap space, the TAWK program will thrash trying not to use the memory you want reserved and your program may slow down

spectacularly.
Using the Near Heap

In the Microsoft C versions 6 and 7, TAWK normally calls the _nheapmin() function to eliminate the near heap. To keep it from
doing this define the variable awk_nheap in your C program and initialize it to 1 as follows:

int awk_nheap = 1;
Advanced TAWK Programming Topics.

What is the TAWK Executable File?

The TAWK executable file contains the compiled TAWK code and the unified symbol table for your entire TAWK program. The
single unified symbol table is what allows you to use global variables and functions in any TAWK source file without having to
explicitly declare them in every file. The unified symbol table also makes very fast incremental compilations possible. The object
file generated by TAWK contains only function entry points, no code. Under DOS the TAWK executable code is virtualized, that
is, it can be read from the executable file on demand and swapped out if additional memory space is required. Atruntime the
DOS version of TAWK determines the optimal use of memory by allowing compiled TAWXK code and your program data to share
the same memory space. This technique, combined with the incremental linking feature, allows gigantic TAWK programs to be
developed quite easily. Programs with more than 640K of compiled code have been developed under DOS using TAWK.

-83-

Thompson Automation Software TAWK Compiler

Win32 Call-Back Functions

Call-back functions are supported only in the Win32 version of TAWK. In order to create a window or dialog box using the
Win32 API for Windows NT or Windows 95, you must provide a call-back function. Typically, the Win32 call-back function
must use stdcall calling sequence, and must have exactly four parameters. If the call-back function meets these criteria, you can
use a TAWK function with exactly four parameters as a Win32 call-back function.

TAWK provides two functions to support Win32 call-back functions:

registercallback("funname")

The TAWK registercallback() function takes as a parameter the name of a TAWK function (as a string) and returns a function
pointer that can be passed to a Win32 API function as a call-back function pointer, or 0 if it fails.

unregistercallback("funname")

You can only use a limited number of TAWK functions (currently, three) as callback functions simultaneously. This function
tells TAWK that the specified TAWK function is no longer being used as a call-back function.

Example:

Declare the Win32 functions we will use.
extern winapi int GetModuleHandle (void*) ;
extern winapi int GetForegroundWindow () ;

DialogBoxIndirect is a macro for

DialogBoxIndirectParamA
extern winapi int DialogBoxIndirectParamA (int,void*, int, int,int);

This is the call-back function written in TAWK
function dialogproc (hdlg,msg,wparam, lparam)

{

print "The Call Back Function was Called!"
}
BEGIN ({

local hinst = GetModuleHandle (0) ;
local hwnd = GetForegroundWindow ()
local callback = registercallback("dialogproc")

if (callback == 0) {
print "All callback functions are in usel"; abort(2);
}
dialog_temp must contain a dialog box template. # In the examples

directory there is a real
program that shows how to do this.
ret = DialogBoxIndirectParamA (hinst,
dialog_temp, hwnd, callback,0)
unregistercallback ("dialogproc")

Sharing File Handles Between TAWK and C.

In a TAWK program, the file handles returned by fopen(), and the pre-defined file handles stdin, stdout, and stderr can be passed
to C functions by declaring the corresponding argument in the extern declaration as type "long". For example, the C fputs()
function can be called from TAWK as follows:

Second argument is actually a FILE*
extern fputs(char*, long)

BEGIN { fputs("hello world\n",stdout); }

You can also determine the underlying DOS numeric file descriptor given the TAWK file handle using the built-in TAWK
function fileno(). As in C, the following are always true:

-84 -

LEy AR AR A5

& & & 0 & & L o O @ D> ® @ MR o B B M B B R W @ D B D B S @ o D o

PRI DITTTTISTDTDSTGTCED DT DT TS TE ST DTID

Chapter 16 Calling External Functions

0
=1
= 2

fileno(stdin) =
fileno (stdout)
fileno (stderr)

The following example calls the C _commit() function, which causes buffered output for a file descriptor to be written to disk.

Argument is a file desciptor.
extern int _commit (int)

BEGIN {
pf = fopen("foo", "w")
print "hello world" > pf
fflush sends data buffered by TAWK to DOS.

fflush(pf)
commit sends data buffered by DOS to disk.

_commit (fileno (pf))
}

Just for interest, note that the DOS commit function can be called directly from TAWXK using interrupt 0x21 function 0x68:

Under DOS this is the same as _commit (fileno (pf))
interrupt (0x21, 0x6800, fileno (pf));

Additional Information.

The file "errata.txt", supplied with the TAWK compiler, may include additional information on features added since the printing
of this manual. In particular, you will find information on the "string" data type in this file.

-85-

Thompson Automation Software TAWK Compiler

Chapter 17: TAWK Built-In Functions

abort()
or
abort(status)

This function causes your TAWK program to execute the code associated with any TERM blocks, and then to exit immediately.
All unwritten data to files will be saved, but any data written to output pipes that have not yet been closed will be abandoned. Use
the close() function to close any output pipes that you want to be executed before using the abort() function. If a status is
specified, it is the exit status of the program and must, for most operating systems, be in the range 0 to 255.

addressof(string)

This function is for EXPERTs. This function returns the address of a string as a 32-bit number. This is most often used to obtain
string addresses for use by the interrupt() function or to pass addresses to C programs for special purposes.

[DOS and OS2 16-bit versions:]
The address is in the default format expected by the INTEL processor, which is a segment value in the high 16 bits and an offset
value in the low 16 bits.

[All other versions]
The returned address is a linear 32 bit address.

Example (for DOS version):

This function returns the segment portion
of a 32-bit address.
function segmentof (x) {
return and(Oxffff,shiftr (x,16))
}

This function returns the offset portion
of a 32-bit address.
function offsetof (x) {
return and(0Oxffff,x)
}

This function changes the current directory
(similar to TAWK’s chdir function)
It uses DOS interrupt 0x21 number 3b(hex) .
To execute the interrupt the registers must be:
AX=0x3b00, DX = offset of string address,
DS = segment of string address.
function msdoschdir (dir) {
local addr = addressof (dir)
interrupt (0x21, 0x3b00,0, 0,
offsetof(addr),0,0,segmentof(addr))
}

WARNING! When you use the addressof() function, TAWK locks the string in memory as long as you are using the address, that
is, as long as you retain a copy of the address in any TAWK variable or array element. When you let go of the address, the
memory is unlocked. This automatic locking/unlocking of the memory used by the string is required because TAWK programs
normally free strings automatically as soon as there is no longer any way to access the string from TAWK. Under DOS, even
constant strings "like this" are normally virtualized so they can be swapped out of memory when they are not being used.

Normally this locking/unlocking is totally automatic and you do not need to worry about it, however, there are several places
where TAWK can not keep track of the addresses that you obtain with the addressof() function:

- 86 -

@@@@@@@@@@@@@%@@@@@@@@&@mmmmmmmm.mm.n..\..

Chapter 17 TAWK Built-In Functions

1) when the address is saved in a structure by the pack() function; 2) when the address is used as an array index, because array
indicies are converted to strings; 3) when the address is passed to a C function which saves a copy of the address in its own static

memory, and then returns.

In these cases TAWK does not know that you are still using the address, and may free or swap out the string it points to unless you
also still have a copy of the address in a TAWK variable or array.

To illustrate how string address locking/unlocking works:

x = addressof ("a string")
The string "a string" is now locked in memory, and
can be passed to interrupt () or to a C program.
< code here to use x >
=0
The string "a string" is now unlocked,
and TAWK may free it to recover its memory space.

S

The following confusing program illustrates how a program can accidentally create an invalid address using the pack() function:

BEGIN ({
x[1] = addressof ("a string");
print peek(x[1]) # Prints 97 (ASCII wval of "a")
y = pack("@l", x);
x[1l] = 0; # This unlocks "a string".
unpack ("@l", vy, xx)
The address upacked into xx[1l] is invalid!
print peek(xx[1]) # May print garbage
}

When x[1] was over-written in the above program, TAWK became free to discard the string: "a string” even though a copy of the
address was saved in the packed structure. When the same address was later unpacked into xx[1] it was no longer guaranteed to
point to the original string "a string”. This type of error can be very difficult for you to find, because this program will work most
of the time, but may fail only when TAWXK is particularly low on memory.

Bitwise Logical Operators:

and(x1,x2...)
or(x1,x2 ...)
xor(x1,x2 ...)
not(x7)

These functions provide bitwise logical operations. They coerce their arguments to 32 bit integers and yield a 32 bit integer result.

The and, or and xor functions perform the specified logical operation on each of the 32 corresponding bits in their integer
arguments and return the result. The not function inverts each of the 32 bits in its argument and returns that result. The and, or
and xor functions can take two or more arguments.

Examples:

BEGIN {
printf ("0x%x\n",and (0x20, 0xff)) # prints 0x20
printf ("0x%x\n",or (0x20,0x0£f)) # prints 0x2f
printf ("0x%x\n",xor (0x20,0xff)) # prints Oxdf
printf ("0x%x\n",or(1,2,4,8)) # prints O0xf
printf ("0x%X\n", not(l)) # prints OxFFFFFFFE

}

See also: shiftr(), shiftl().

-87-

Thompson Automation Software TAWK Compiler

argecount()
This function returns the number of arguments that were passed to the function in which it is called. The following example will

print "2":

function foo(a,b,c) { print argcount () }
BEGIN { foo(x,y) 1}

argval(N)

This function returns the Nth argument of the current function. The following is a function to return the average of up to four

arguments:

function average(a,b,c,d) {
local i, total

for (i = 1; i <= argcount(); i++) {
total = total + argval(i)
}
return total / argcount()
}
atan2(y,x)

Arc-tangent of y/x in radians. The result is in the range -pi to pi. An easy formula to compute piis:

pi = atan2(0,-1)

call(funname, arguments ...)

and
calla(funname, argument_array)
The call and calla functions perform an indirect function call. Funname is the name of the function to call. You can call almost
any function this way, including functions written in TAWK, pre-defined TAWK functions (like print), or extern functions. The
arguments to the function can be specified directly using call, or can be supplied in an array using calla. You can omit the
arguments to call if no arguments are required.
The TAWK debugger may not be able to display stack frames below a function called with the call or calla functions. In other
words, the "Calls" option in the debugger may not be able to display the functions that were in use prior to using the call or calla
functions, until that function returns. This is a "feature", meaning it is a bug that we do not plan to fix.

Example:

BEGIN {
call("print", "hello world")
Can also put arguments in an array:
x[1] = "hello"

x[2] = "woxrld"

calla("print",bx)

char(value ...)

The char function returns a string whose characters are specified by one or more ASCII values. Examples:

-88-

b
b
b
p
b
b
p
J
J
b
B
B
b
b
b
J
b
J
J
J

b
b
p
p

b
b

b
b
p
p
p
J
b
J
b
J
B
P

P
J
b
B

Chapter 17 TAWK Built-In Functions

BEGIN {
print char(65) # prints A
print char(65,66,67) # prints ABC

chdir(directory)
The chdir function changes the current disk drive and directory to those specified. Chdir() returns FALSE (0) if it fails, otherwise
TRUE (non-zero).

[DOS, 0S/2, Win32 Versions]
Chdir() operates differently from the DOS or OS/2 cd or chdir command in that it can change either the current disk drive or the

directory path or both. For example: chdir("/usr") will change to the /usr directory on the current drive, chdir("a:") will change to
the current directory on drive "a:", and chdir("a:\\") will change to the root directory on drive "a:". Either forward or backward
slashes may be used in path names. Note that the backslash used as a directory separator must be doubled when appearing in a,

literal string in TAWK.

See also: getcwd().

chmod(filename,mode)

The chmod function changes the mode of the specified filename to the specified mode. The mode can be specified as an integer or
a string. If mode is an integer, it is a UNIX compatible integer file mode, as described further in the documentation for the stat
function. If mode is a string, it must follow the following syntax:

[who] op modes

No spaces are allowed in the string.

The who part can be: "u" for user modes, "g" for group modes, "o" for other modes, or "a" for all three modes. If who is omitted,

"a" is assumed. Any combination of "uog" is permitted, for example, "u", "ug”, "uo", etc.

"o

The op part can be: "=" to set the file mode to exactly the modes specified, "+" to add only those modes specified, or "-" to
remove only those modes specified.

The mode part can be: "t for read permission, "w" for write permission, "x" for executable permission, "h" for hidden file, "s" for
system file, and "a" for the archive attribute.

Multiple modes can be set at the same time by separating them with a comma, for example: "o=r,u=rwx"
The chmod function returns TRUE (1) if it succeeds, or FALSE (0) if it fails.

[UNIX Version]
The "h", "s" and "a" mode letters are ignored.

[DOS, WIN32 and OS/2 Versions]
The who part is just ignored, since these operating systems have no such concept. The "r" and "x" modes are ignored, and the "w"

permission controls the read-only attribute of the file.

Example:

BEGIN {
Add read and write permission for everyone:

chmod ("file", "+xrw")

Set user permission to rwx, and

other and group permissions to read-only
chmod (“file", "u=rwx, og=r")

-89 -

Thompson Automation Software TAWK Compiler

chsize(filename,size)
The filename can be the name of a file, or a file descriptor, such as that returned by the fopen function. Chsize sets the size of ’
filename to the specified size. 1f size is smaller than the existing file size, the data at the end of the file is discarded. If size is

greater than the existing file size, the size of the file is increased by adding zero bytes. If the filename is currently open, the size

change may not take affect until you close the filename.

If the filename is currently open for reading, chsize will print a note message and fail.

g, note that chsize does not change the current location where output data is written; use
¢ writing to a file, and want to both change the file size, and set the current output
11 have to use both chsize and fseek at the same time (in either order).

If the filename is currently open for writin
fseek for that purpose. For example, if you ar
location to the new end of file location, you wi

The chsize function returns TRUE (1) if it succeeds, or FALSE (0) if it fails.

[DOS Version]
Some DOS programs require a Control-Z character at t

you must do it yourself, for example:

he end of the file. If you need the file terrninated by a Control-Z character,

chsize("file",newsize)
printf ("\xla") >> tfile™

close(x)

This function closes a file or pipe. The argument X can be any one of:

1) The name of an open file, for example:

getline < "myfile"
print > "outfile”
close ("myfile")
close("outfile")

2) A file descriptor obtained by the fopen command, for example:

pf = fopen ("myfile","r")

if (pf) {
getline first_record < pt
close(pf)

}

3) Input or output pipe commands. To close a pipe, specify the exact same string that was used to read or write from the pipe.

Example of an input pipe:
"dir /w" | getline
close("dir /w")
Example of an output pipe example: (Note: The sort -r option is recognized under UNIX or Thompson Toolkit but not under

DOS or 0S/2.)

print "hello world" | "sort -r"
close("sort -r")

There is a limit on the number of files and pipes that may be open simultaneously, so it is important to close files or pipes that are
no longer in use. Files that were opened automatically by TAWK (for example, command line arguments interpreted as files or
filenames specified to the "getline" function) are automatically closed when the end of the file is reached. Similarly, input pipes
(see example 3 above) are automatically closed when the information in the pipe is exhausted. So you only need to call close() in
the following cases:

o Files that you open explicitly using the fopen() function remain open until you call close() to close them.

-90-

P S

mmmammmmmmmmm%wﬁﬁmﬁﬁmm@

|

Wy W W W S W 9 W W W W W W WO W S W W W WO W Wy mr W wp @ wr e e wme ww e e
p—

Chapter 17 TAWK Built-In Functions

o If you wish to terminate processing a file before the end of the file is reached. HINT: To skip processing of the
remainder of the current input file and force TAWK to go on to the next file on the command line, use:

close(FILENAME).

o Output pipes (see example 3 above) remain open until they are closed. Under DOS the commands specified by the
output pipe are not actually executed until the pipe is closed or until the program ends.

It never hurts to close a file or pipe that was already closed. However, future versions of TAWK may print a "note" message if
you call close() on the same pipe or file twice in a row.

convertnum(str)
or
convertnum(str,base)

Returns a number obtained by interpreting the string: str as an integer in the given number base, which must be in the range 2 to
16. If the base argument is not provided, convertnum determines the base by examining str. In this case, if the string begins with
"0x" or "0X", or ends in "h" or "H", it assumed to be base 16, otherwise, if it begins with a "0", it is assumed to be base 8,
otherwise it is base 10. If a base argument is provided, convertnum does not examine str to determine the base. Note that these
rules are different and broader than those normally used by TAWK when converting strings to numbers.

BEGIN {
print convertnum("la",16) # prints 26
print convertnum("lah") # prints 26
print convertnum("101",2) # prints 5
}
cos(x)

Cosine of x. X is in radians. To convert degrees to radians use:
radians = pi * degrees / 180.

See also: sin(), atan2() to compute pi.

ctime()
or
ctime(timeval)

Ctime() returns the time as a string in the following format:

"Wed Jun 17 13:39:36 1994"

If ctime() is invoked without arguments, it returns the current time. If a timeval argument is specified, then that time is returned
instead. If timeval is specified it must be a time number such as that returned by the time() or filetime() functions.

debug_function()

debug_get_frame()

debug_get_stack_var()

debug_set_stack _var()

For Experts Only! These functions are used by the TAWK Debugger to control the program being debugged and have no use in

normal TAWK programs. On-line documentation for these functions is provided in the TAWK installation directory in case you
want to modify the TAWK Debugger or even write your own. Be forewarned that the TAWK Debugger is complicated and

tricky.

.91 -

Thompson Automation Software TAWIK Compiler

delete(variable)

This function deletes any specified element from an array, or deletes an entire array if no particular element is specified. The
parentheses are optional for this function. For example:

BEGIN {
%x[1] = *"this"; x[2] = "that"; x[3] = "those"”
delete(x[2]) # Deletes only array element x([2]
delete (x) # Deletes all elements in array X.
}

Note that arrays are automatically deleted if they can no longer be accessed, and you do not need to specifically delete them
explicitly in this case. In the following example array x is deleted automatically when the function returns:

function fool()

{
local x
x[1] = "x is an array"
}
[Compatibility Notes]

Old versions of awk permit the delete function to be called without parentheses, and this usage is supported. Prior versions of awk
did not permit deletion of an entire array at once. Instead you had to say something like this:

for (i in x) delete x[1i]

Butin TAWK, it is much faster to delete the entire array at once like this:

delete x

dirlist(dirname, x)

Where: dirname is the directory name (for example: ".", "/", or "c:/usr/bin") and x is an optional array. The return value is 1
(TRUE) if the directory exists, or 0 (FALSE) if not. If x is specified, it is filled in with an array of the filenames found in the
directory. The first filename is returned in x[1], the second in x[2], etc. Both regular filenames and directory names are included

in the returned list.

For compatibility with TAWK version 4, the getdirlist() function is an alternate name for the dirlist() function.

See also: the stat() function to obtain more information about a file or directory.

exit()
or
exit(status)
The parentheses are optional for this function. This function causes your TAWK program to stop processing input files. The

TAWK program will execute the END code blocks, if any, before it exits. If exit appears in an END block it terminates
processing immediately. If a stazus is specified, it is the exit status of the program and must be in the range 0 to 255.

If no exit code is specified in the program, the default exit code is: 255 if an interrupt occurred; 2 if a fatal error occurred; 1 if a
file specified on the command line to the Automatic Input Loop could not be opened; O otherwise.

NOTE:

The exit statement DOES NOT NECESSARILY exit your program! It will execute any END and /or TERM code blocks in your
program first. See the abort() function to end a program immediately.

Example: Using Exit Codes in DOS.

92

Py D>, AG AT
R R < W~ R . N NP NP NP:. . S P N S N S D S S AW A AR AR B B R B A o B B 0 A S A A

rywwwwwwwwwwwwwwmwmmmm%@@@W@WWWWW%@%%%w%%www

Chapter 17 TAWK Built-In Functions

The errorlevel function in DOS and OS/2 tests the exit code of the previously executed program. Note that it tests if the exit code
is greater than or equal to the specified value. Therefore you must arrange your errorlevel tests in descending order, starting with
the largest possible error code. For example, assuming that myprog.awk sets the exit code using the exit() or abort() statement:

awk -f myprog.awk

if errorlevel 3 goto case3

if errorlevel 2 goto case2

if errorlevel 1 goto casel

rem Code to process exit code 0 goes here
goto end

;casel

rem Code to process exit code 1 goes here
goto end

:case?

rem Code to process exit code 2 goes here
goto end

:case3l

rem Code to process exit code 3 or higher goes here

goto end
end

The following is an example that tests the exit code under UNIX or using the Thompson Toolkit:

awk -f myprog.awk
case $? in # variable $? contains the exit code
0) # Code to process exit code 0 goes here

i # Doubled semi-colons terminate each case
1) # Code to process exit code 1 goes here
2) # Code to process exit code 2 goes here
*) # Code to process any other exit code

esac

exp(x)
Computes the exponential function: e » x. In other words, e to the xth power, where e is the base of natural logarithms. To
determine the value of e, simply use:

e = exp(l);

fdopen(filedescriptor,mode)

For Experts Only! This function creates a file handle that can be used within your TAWK program, given an open filedescriptor
from the operating system. This function is similar to the fopen function, but it takes a filedescriptor, instead of a filename. File
descriptors are normally obtained directly from the operating system, for example, by the operating system’s open() function.
Your TAWK program might receive such a file descriptor as a return value from a library called from TAWK as a DLL. In order
to read from, or write to, an existing file descriptor, your TAWK program must call fdopen first, and use the return value from
fdopen rather than the file descriptor itself, in calls to getline, print, etc. The mode argument is as desribed for the fopen function,
miodified as described below. You should make sure that the mode you specify is compatible with the mode with which the
filedescriptor was opened originally.

[Win32 Version]
The filehandle can optionally be a Win32 native file HANDLE or a SOCKET. In this case, the mode should include "h". The

following example uses the WIN32 socket function to create a new socket, and opens the socket so it can be read and written using

normal TAWK functions like fread or fwrite. (This example is incomplete, because it does not include the required socket library

initialization.)

-93.

Thompson Automation Software TAWK Compiler

extern int WINAPI socket({int,int,int);
function create_socket (af, type,protocol) {

local fd
fd = socket (af, type,protocol)
if (fd == -1) abort(2) # socket function failed

return fdopen(£fd, "r+h")
}

See also: fileno, fopen, close.

feof(filename)

This returns 1 if the specified filename contains no more data to read, 0 if there is more data, or -1 if the file is not open for
reading. A file descriptor, such as returned by the fopen() function, can be used instead of a file name.

ferror(filename)
or
ferror(filename,value)
This returns 1 if an error has occurred on the specified filename, 0 f no error has occurred, or -1 if the file is not open. A file
descriptor, such as returned by the fopen() function, can be used instead of a file name. If the optional value argument is specified,

the error indicator for filename is set to that value, either 0 or 1. An error typically indicates an inability to read from or write to
the file, for example, because the file mode does not permit the operation, the file is locked, the disk is full, or there are too few

available file descriptors.
Example: Sometimes it is easier to check for errors after numerous read or write operations, rather than checking each individual
read/write operation. Here is a copy command:

BEGIN {
if (ARGC < 3) {
print "Syntax: copy filel file2"; abort()

}
while (x = fread(ARGV[1])) fwrite(x,ARGVI[2])

if (ferror (ARGVI[1])) print "error reading",ARGV[1]
if (ferror (ARGVI[2])) print "error writing",ARGV[2]

fflush(filename)

Any buffered output is written immediately to the specified filename. The fflush function should only be used on files that are

being written to; if called on a file open for reading, fflush causes a loss of all data currently buffered for input from that file. You
rarely have to use this function because TAWK automatically flushes data before any fseek or chsize function, before a system or
spawn call, before your program ends, and flushes after every write to files that are actually devices (for example, the console). A

file descriptor returned by fopen() may be specified instead of the filename.

filemode(filename)
or
filemode(filename,who)

Returns a mode string representing the mode of the file or directory specified by the filename. 1f the filename does not exist, the
empty string ("") is returned.
Under UNIX, the second who argument can be:

"user” to return file permissions for the user (i.e., the owner of

the file);

- 94 -

TAWK Built-In Functions

Chapter 17
"group” to return file permissions for the file’s group;
"other" to return file permissions for all others;
"all” to return all permissions simultaneously.

Under DOS, OS2 and Win32 the second argument is ignored.

The letters in the returned mode string are assigned as follows:

udn
"F‘
nCn

ot
r

the path is a directory;

the path is a file;

the path is a device (like the terminal);

the file can be read (this is always true under DOS);

the file can be written;

the file is executable;

used as a place holder when a permission is not granted.

For DOS, OS2 and Win32 the following may also be included:

nhu

(]

S

"on

a

the file is a hidden file;
the file is a system file;
the file archive bit is on.

For UNIX the following may also be included:

nbn
no i

p

Hn

S

the path is a block special file;

the path is a named pipe or fifo;

this letter is included in the “user” or “group” file permissions
if, respectively, the “set user id on execution” or “set group id
on execution” mode is set for the file;

this letter is included in the “group” file permissions if the file
has mandatory locking enabled;

this letter is included in the “other” file permissions if the
“sticky” bit is set for the file. The “sticky” mode is not really
associated with the “other” file permissions, that is just where
the letter is returned. See your UNIX documentation for more
information on these speical modes.

Note: For any given file only one of "d", "f", "c", "b" or "p" is included in the returned string to indicate the base type of

the file.

fileno(filename)

Returns the operating system's file descriptor that is associated with filename, or -1 if the file is not open. The operating system's
file descriptor is usually a number in the range 0 to 20. This function is particularly useful when you need a file descriptor for a

DOS interrupt.

When TAWK reads a file with the getline function, it automatically cioses the underlying file descriptor when the end of the file is

reached, unless the file was opened by fopen(). So fileno() may return —1 even though you just read a record from the file. To
avoid this problem you can use fopen() on the file: after an fopen() call, the underlying file descriptor is never closed until your

program closes the file with the close() function.

_95.

Thompson Automation Software TAWK Compiler

filesize(filename)

Returns the length in bytes of the specified filename, or -1 if the file does not exist.

filetime(filename)
or
filetime(filename,whichtime)

Returns the modification time of the specified filename as an integer.

[UNIX, 0S/2, Win32 versions]
The second argument can be:

Whichtime Meaning
"m" or "modification" to return the last modification time of

the file (this is the default);

"a" or "access" to return the last access time of the
file;
“¢" or "creation” to return the creation time of the file.

[DOS Version]
Under DOS, the second argument is ignored and the file modification time is always returned. (DOS does not keep track of the

other times.)

findfirst(pattern)
or
findfirst(pattern,flags)
or
findnexi()

These functions are obsolete: for new programs, use the dirlist() function, which is both easier to use and works uniformly on all
operating systems.

These functions are used to find filenames matching a given filename pattern. The filename pattern uses the rules of the
underlying operating system, for example, under DOS the pattern to match any filename is "*.*", while under UNIX the pattern is
just "*". The pattern may include a directory prefix, for example "\usr\\bin*.*", Findfirst() returns the first filename that
matches the pattern, if any, otherwise an empty string. Findnext() returns the next matching filename until no more filenames
match the pattern, then returns an empty string. Only normal files are returned unless the optional flags argument is specified as
one of the following values. The values (except number 8: volume id, which should be used alone) may be added together to
return files matching any of the criteria. Normal files are always included in the returned files, even if flags is specified.

Flags Meaning

2 return hidden files (Has no effect in UNIX version);

4 return system files (Has no effect in UNIX version);

8 return the volume id (DOS version only.) Note: the volume

label is returned in 8.3 filename format, for example:
"myfirstd.isk". You must remove the "." yourself.

16 return sub-directories;

- 96 -

@@@'@@@@@@@@«@%@@@@@@@ﬁ@&@@z@@%a@@mm@%ﬁ@@@@ﬂw@g@

P

W W W W W W W W W W T W W W W W OO TEESE v g e $F &

Chapter 17 TAWK Built-In Functions

Example: The following program prints the names of all normal files in the current directory. If you are using DOS, use "*.*"
instead of "*":

BEGIN ¢
x = findfirst("*")
while (x) {
print x
x = findnext ()
}
}

flock(filename,offset, cni)
or
flock(filename,offset,cnt,mode)
Locks the specified area of the filename. The locked area begins at the location indicated by offset, where 0 is the first byte of the

file, and continues for cnt bytes. It is the programmer’s responsibility to ensure that all locked regions are eventually unlocked by
a call to funlock(). A file descriptor returned by fopen() may be specified instead of filename.

The optional mode argument may be:

Mode Meaning

"x" exclusive lock: other processes are denied access to the
area.

"s" shared lock: other processes may also lock the area.

This option is ignored under DOS and OS/2: in these
operating systems all locks are exclusive.

"on

"n" may be used with either "s" or "x" to indicate a non-
blocking lock, that is, if the lock can not be obtained,
the flock function returns immediately rather than
waiting.

"nn

absent same as "x".

[DOS Version]
Locking will not work under DOS unless the “share.exe” program or some other file-sharing controller like Microsoft Windows

3.11sin use.

See also: funlock()

fopen(filename,mode)

Opens the specified filename for subsequent input/output operations of a type specified by the mode argument. TAWK will
normally open files for you automatically the first time you use the filename with an input/output function, for example, getline or
print. However, you can use fopen if you want to open the file yourself. For example, if you want your program to detect errors
when opening files, it is most easily done by using fopen to open the files deliberately, and checking the fopen return value for 0.
It is also especially advisable to use fopen() in the following cases: 1) If you want to specify an input/output mode other than the
default ones, for example, if you want to both read from and write to a file simultaneously, or if you want to specify a binary file
and it is inconvenient to use RAWMODE. 2) If you want to start reading a file at a specific location: use fopen() to open the file,
then fseek() to move to the specified location: fopen is needed because you can not use fseek() until you have opened the file.

The mode argument must start with one of the following:

Mode Meaning
"r" File is opened for reading only.

-97-

Thompson Automation Software TAWK Compiler

"

r+" File is opened for reading and writing.

"w File is created for writing only. If the file previously existed
its former contents are lost. The file position for writing is
set to the beginning of the file.

"we" Like "w", but fails if the file already exists. This can be used

in multi-tasking environments to guarantee that a newly

created file was not simultaneously opened by another

process.
T Like "w" but reading is also allowed.
"w+e" Like "we" but reading is also allowed.
"a" File is opened for writing only. If the file did not exist it is

created; if the file did exist the current file position is set at
the end of the file so that written data will be appended to the
end of the file.

Tat" Like "a" but reading is also allowed.

Fopen Text/Binary Mode:

[DOS, OS/2 and Win32 Versions]
The end of line marker under UNIX is "\n" (a newline character.) Under DOS and OS/2 itis a "\'\n" (carriage-return followed by

a newline.) Under DOS and OS/2 files can be opened in either “text” or “binary” mode. In “text” mode TAWK automatically
translates the "\r\n" to "\n" on input, and "\n" to "\r\n" on output, and additionally allows a Control-Z character in the file to
indicate end-of-file. In “binary” mode the file is not treated specially and no translation is performed.

The file mode argument may include a letter to indicate “text” or “binary” mode for the file under DOS or 0S/2. Under UNIX
these mode letters are ignored. If.a file mode is specified then that mode is used for the file and the RAWMODE variable has no
affect on this file. The following mode letters may be appended to the file mode:

Mode Meaning

“b" The file is opened in “binary” mode: no translation is
performed and the file is not treated specially.
" The file is opened in “text” mode: On input "\r\n" is translated

to "\n", on output "\n" is translated to "\r\n", and a control-Z in
the file is treated as an end-of-file marker.

Fopen Sharing Mode:

[DOS, 0OS/2 and Win32 Versions]
Under DOS and OS/2 the following letters can also be appended to the file mode to specify that the file is to be opened with a

specified file-sharing mode. Sharing modes have no affect under DOS unless the "share.exe" program or some other file-sharing
controller (like Microsoft Windows 3.1) is in use. Once you have opened a file with a file sharing mode, you can lock or unlock
parts of the file using flock() or funlock(). The following are the supported file-sharing modes for both DOS and OS/2:

Mode Meaning

"dr" File is opened in DENY-READ sharing mode;

"dw" File is opened in DENY-WRITE sharing mode;

"d+" File is opened in DENY-READ-WRITE sharing mode;
"dn" File is opened in DENY-NONE sharing mode; (The deny-

none mode is confusing: it actually denies access to all other
programs that do not specify a compatible sharing mode.)

Miscellaneous Fopen Modes:

The following additional mode letters are supported, if the facilities are available in the underlying operating system.

- 98-

,f@?ﬁ%wm&%mﬁmwW@@mmmmmmmmmmmmm&mmmww&mmmmmmmmmm@a@

e W W W W W W W W W W W W W W W W W @ Wy W W W W W W W WD T W W @ W W W W W

Chapter 17 TAWK Built-In Functions

Mode Meaning

"n" No-inherit mode. The returned file descriptor will not be
inherited by sub-processes. This may make more file
descriptors available for programs executed with TAWK’s
system or spawn functions.

e" Exclusive open mode. If the file is being opened for writing,
fopen will fail if the file already exists. This is sometimes
used to create semaphore files.

Examples: To open file myfile.txt in the root directory of drive C: for reading:

fopen ("C:\\myfile.txt","r")

To open a database file for both reading and writing in binary mode with deny-none sharing mode:

fopen ("\\dbase\\myfile.db", "r+bdn")

Fopen fails and returns 0 (FALSE) if the file could not be opened for any of the following reasons:

e file opened with mode "r" did not exist;

the directory did not exist or was full;

o the file had a read only attribute and the file mode specified writing;

e asharing violation occurred;

e insufficient privileges to access a file or directory;

e all file descriptors are already in use. (In this last case TAWK prints a warning message.)

If fopen succeeds, it returns a non-zero file descriptor that can be used interchangeably with the filename for all subsequent file
operations on the file. However, you can also just ignore the file descriptor and continue to use the file name for file operations.
For example, the following are all legal:

pf = fopen("myfile","r")
getline < "myfile"
getline < pf
fread (10, "myfile")
fread(10,pf)

More Details About Fopen:

When you use the getline or print/printf functions to read from or write to a file, you do not need to use fopen() to open the file
first. In this case files are opened automatically with the default modes as follows:

function default mode meaning
getline < file " file is open for reading only
print > file "W file is open for writing only
print >> file "a" file is open for writing only, data is

appended to any existing file.

When you intermingle print>"file" and print>>"file" statements, the first print (or printf) statement for the "file" encountered at
exccution time determines the file mode. Subsequent print (or printf) statements simply continue to write to the already opened
file.

An incompatible file I/O operation is one that attempts to read from a file opened for writing-only, or to write to a file opened for

reading-only. If the file was opened by fopen(), then incompatible operations are disallowed. If the file was opened
automatically, then incompatible operations are allowed, but the file is automatically closed and re-opened with the new mode,

and TAWK prints a warning message.

-99-

Thompson Automation Software TAWK Compiler

fread(cnt filename)

Reads cnt bytes from filename and returns them as a string. If an error occurs an empty string is returned. If the file is exhausted,
a string of less than cnt bytes in length will be returned. A file descriptor returned by fopen() may be specified instead of a

filename.

fseek(filename,location), or fseek(filename,location,flag)

After calling this function, the next read or write operation on filename will occur at the specified location counted in bytes from
the start of the file. The file must be open before using this function. The optional flag argument may be any of the following:

Flag Meaning
0 The location is measured as an offset from the

beginning of the file. This is also the default if no
flag is specified.

1 the location is measured as an offset from the current
location.

2 the location is measured as an offset from the end of
the file.

A file descriptor returned by fopen() may be specified instead of filename.

ftell(filename)

Returns the current location in the filename in bytes from the beginning of the file. If the filename is not open -1 is returned. A
file descriptor returned by fopen() may be specified instead of filename.

funlock(filename,offset,cnf)

Unlocks the specified area of the filename. The unlocked area begins at the location indicated by offset, where 0 is the first byte of
the file, and continues for cnt bytes. It is the programmer’s responsibility to ensure that all file regions locked by flock)) are
eventually unlocked by funlock(). A file descriptor returned by fopen() may be specified instead of filename.

fwrite(str, filename)

Writes the string argument: str to the filename. The number of bytes written from str is returned. If an error occurs 0 is returned.
Note that the actual number of bytes written to the file will be greater than the return value because new-line ("\n") characters are
iranslated to carriage- return new-line ("\r\n") sequences unless the RAWMODE variable specifies otherwise. A file descriptor
returned by fopen() may be specified instead of filename.

getawkvar(variable_name)

Returns the value of the specified TAWK variable. Only variables that are declared global and that are not arrays can be
specified. (An exception: if your program consists of a single source file then all variables are automatically considered global.)

The following example prints "10":

global x
BEGIN {
x = 10

print getawkvar ("x")

- 100 -~

Chapter 17 TAWK Built-In Functions

getcwd()

The getcwd() function returns the current directory name. On PCs, it will include the disk drive specifier, for example:
“D:/ust/patt". See also: chdir().

getkey()
or

getkey(1)

Getkey() returns a key from the keyboard. If none are ready it waits. If the key is a printing character, including tab, back-space,
carriage-return, newline or formfeed, that character is returned. Otherwise getkey() returns the name of the key, for example "F1",
"HOME" or "ESC". If the key is an Alt-, Ctrl- or Shift- combination the key name is prefaced with "A-", "C-" or "S-",
respectively. For example the key combination shift- F1 returns "S-F1".

The behavior of the getkey() and kbhit() functions is undefined for the keys Control-C, Control-S, Control-P, Print-Screen and
Control-Print-Screen.

[DOS and OS/2 Versions]
If getkey is given an argument of 1 it returns the raw 16 bit integer corresponding to the IBM key-code of the key pressed.

[DOS and DOS/32 Versions]
Under DOS this function uses the keyboard interrupt, so it will only work on IBM compatible computers. Non-IBM compatible

computers are likely to crash if this function is used, but almost all computers are IBM-compatible in this regard.

[UNIX Versions]
Calling getkey or kbhit puts the terminal in "cbreak" and "noecho” mode. The terminal is automatically returned to the original

mode when a getline, fread, system or spawn function is called, or when the program ends. Getkey attempts to recognize escape
sequences, beginning with an ESC (27) character, as special keys, such as function keys. The escape sequences that are valid are
retrieved using the “curses” database. This method does not always work! Additionally, some keyboards require programming,
which TAWK does not attempt to do. The result is that sometimes function and special keypad keys are recognized, and

sometimes not.

See also: kbhit().

getline()
or
getline(variable_name)
The getline function returns an input record either from the file being read by the Automatic Input Loop, or from a specified file or
pipe. The parentheses are optional for this function.

To read from the Automatic Input Loop use:

getline
or
getline var
The record is returned in the variable: var, if specified; otherwise it is placed in the current record: $0. As always, whenever $0 is
changed the corresponding fields: $1, $2, etc. and the NF (Number of Fields) variable are also updated. The NR (Total Number of
Records) and FNR (Number of Records from current File) variables are also incremented.

To read from a specific file, usc:
getline < "filename"

or
getline var < "filename"

The record is returned in the variable: var, if specified; otherwise it is placed in the current record: $0. The "filename" can be
specified as a string as shown, or can be a variable, or any TAWK expression. Asa special case, if the filename is "-" the record

- 101 -

Thompson Automation Software TAWK Compiler

is read from the standard input. This form of getline does not increment the NR and FNR variables, unless the specified filename
is the current input file being processed by the Automatic Input Loop. This form of getline also prevents the BEGINFILE and

ENDFILE blocks from being executed automatically.

To read from a command using a pipe:

"command" | getline
or
"command" | getline var

This is called a “pipe” because it pipes the output from the specified "command" into your program. The record is returned in the
variable: var, if specified; otherwise it is placed in the current record: $0. The "command" is a string containing the full command
line of the command to run, and can be specified as a string as shown, or can be a variable, or any TAWK expression. The pipe
works as follows: The "command” is executed once the first time it is used with getline. The records returned by getline are
retrieved from whatever is output to the standard output by the specified command. Subsequent calls to getline using the identical
“command" cause successive records to be returned from the command output until all records have been read.

In all cases the getline function uses the current values of the RS and RECLEN variables to determine the format of the next

record to read.

Return Value: Getline returns 1 if a record is returned. It returns O if there is no more input available either from the Automatic
Input Loop, the specified file, or the pipe. It returns -1 if it fails. Failure is most often caused by the specified file not being

found or already being used in a shared environment, or if the pipe command fails.

After reading all the records from a file or pipe getline will continue to return 0 until you use the close() function to close that file
or pipe. So if you want to start over reading at the beginning of a file or to re-execute a pipe command you must use the close()
function.

There are limits on the number of files and/or pipes you can have open simultaneously. If you only read part of a file or pipe and
are done with it you should close it using the close() function to free the operating system resources (like file desciptors) that were
in use. Itis not strictly necessary to close() files or pipes that you read to completion (that is, after getline() returns 0), because

TAWK automatically releases the operating system resources in this case.

Example:

The following program reads in a file named: "filename", and simply prints it back out:

BEGIN {
while (getline x < "filename" > 0) {

print x
}
}

WARNING:
The following example is incorrect:

BEGIN {
while (getline x < "filename") ({

print x
}
}

The above example does not test the return value of getline > 0. If the file: "filename" happens to not exist or be inaccessible for
some other reason, getline returns -1, and this program will be stuck in an infinite loop.

gsub, gsubs

See the sub function.

-102-

m@éwwwmwwwwwwmmwmwwwwwwwwwwwwwm%@%%%%%%%‘%W@@

Chapter 17) TAWK Built-In Functions

index(string1i,string2)
or
index(string1,string2,start)
This function returns the index where string2 occurs in stringl, or 0 if string2 is not found in stringl. If start is specified, it is the
index where the the search begins in stringl. For example:

index("abc", "a") # returns
index ("abc", "b") # returns
index ("abc™", "d") # returns
index ("abcbc", "b",3) # returns

> o

In the special case where string2 is empty ("") the index() function returns 1 if stringl is non-empty, and zero otherwise, that is:

index("abc","") # returns 1 (a special case)
index("","") # returns 0

See also: rindex() function.

inp(port)

inpw(port)

These functions perform a low level I/O function: input byte (inp) or input word (inpw) from the specified /O port. The value
retrieved from the input port is returned. Under OS/2 or UNIX these functions do nothing.

See also: outp(), outpw().

int(x)
Returns the integer part of x. The result may still be a floating point number (with a fractional part of 0) if it is too large to express
as a 32 bit integer.

print 3/2 # Prints "1.5"
print int(3/2) # Prints "1°
print int(-3/2) # Prints "-1"

interrupt(intno,AX,BX,CX,DX,SI,DI,DS,ES)

[WARNING]
USE THIS FUNCTION WITH CARE! YOU CAN CRASH YOUR COMPUTER OR LOSE FILES BY IMPROPER USE!

[DOS and DOS/32 Versions Only]

If you are running under DOS this function performs interrupt number intno with the registers set to the specified register values.
The intno argument is required. The other register arguments are optional, but if specified they must be given in the order shown.
If you specify a variable for any register argument(s), the variable(s) will receive the values that were placed in those register(s)
after the interrupt returns. (This is a technique called pass-by-reference, and is used in only a few places in TAWK.) The
interrupt function returns the value of the carry flag after the interrupt.

Example: to get the current date you could use MS-DOS interrupt 0x21 function 0x2A, which returns the year in CX and the
month and day in DX as follows. The interrupt requires AH (high half of AX) to be 0x2A. The BX register is not used by the
interrupt, but a value of 0 is specified as a place holder because we need CX and DX.

interrupt (0x21, 0x2A00,0,year, moday)

Documentation on interrupts is available from many sources, including "MS-DOS Functions" by Ray Duncan, Microsoft Press.
See also: addressof(), OSMODE.

[DOS/32-bit Version:]
Only interrupt 0x21 is supported and string addresses must be handled specially. String addresses are normally passed in a register

- 103 -

Thompson Automation Software TAWK Compiler

pair, for example ES:DX. In the 32-bit version you must pass the entire 32-bit address returned by addressof() in the register that
is meant to receive the offset (DX in the example above.) The interrupt function automatically sets the DS and ES registers to the
correct values. Do NOT pass any values for DS or ES, or you will probably generate an error. If you are trying to write TAWK
code that will work when compiled both for normal DOS and 32-bit extended mode DOS, you will have to check the OSMODE
variable to determine which version is being used and call the interrupt function appropriately for each version.

[Other Operating Systems]
Under other operating systems this function does nothing.

kbhit()

Kbhit() returns non-zero only if a key is ready at the keyboard. If a key is ready it returns the key in the same format as that
returned by the getkey() function. The behavior of the kbhit() function is undefined for the keys Control-C, Control-S, Control-P,
PrintScreen and Control-PrintScreen. This function uses the keyboard interrupt so it will only work on IBM compatible
computers. Non-IBM compatible computers are likely to crash if this function is used.

length(expr)

If expr is a string then the number of characters in the string is returned. If expr is an array then the number of elements in the
array is returned. The length function can be specified without parentheses for backward compatibility with awk.

log(x)

Natural logarithm of x. Example: the following function computes base 10 logarithms:

function logl0(x) { return log(x) / log(10) }

match(string,pattern)
or
match(string, pattern,start)
or
match(string,pattern,start, pstart,plength)
This function returns the index in the string that is matched by the pattern, or 0 if it does not match. In addition the match()
function sets TAWK global variables as follows: RSTART is set to the index in the string of the first character matched by the

pattern (this is the same as the return value of the match function); RLENGTH is set to the length of the string that was matched
by the pattern.

If the optional start parameter is specified it is the index in the string where the the search begins in the string. Start defaults to 1,
which means search the entire string. If the optional pstart and plength variables are specified they must be variable names that
will be filled in with arrays that contain information about the match as follows:

pstart{0] The index in the string that was matched by the entire pattern (This is the same as RSTART above.)

pstart[N] The index in the string that was matched by the Nth left parenthesis in the pattern. N is an integer from 1 to
the number of pairs of parentheses in the pattern.

plength{0] The length of the string that was matched by the entire pattern. (This is the same as RLENGTH above.)

plength[N] The length of the string that was matched by the Nth set of parentheses in the pattern. N is an integer from 1
to the number of pairs of parentheses in the pattern.

The match function is very similar to the TAWK tilde (~) operator except that the match() function allows you to specify a starting
index and it returns more information about the match. The following two statements are identical except that the match()
function sets RSTART and RLENGTH:

- 104 -

. P —

Chapter 17 TAWK Built-In Functions

if (x ~ /pattern/)

if (match(x,pattern))

Here are some more examples:

BEGIN {
match ("abc", /b/) # Sets RSTART=2, RLENGTH=1
match ("abbbc", /b*/) # Sets RSTART=2, RLENGTH=3

match("abbbc", /b*/,3) # Sets RSTART=3, RLENGTH=2

The following sets: RSTART=2, RLENGTH=4,
pstart([0]=2, plength[0]=4,

pstart[1]1=3, plength[l1]=2

match ("abccde", /b(c*)d/,1,pstart,plength)

mkdir(dirname)

Function creates directory dirname. Returns 1 (TRUE) if it succeeds, or 0 (FALSE) if it fails. See also: rmdir(), rmfile(),
rename()

not(x7)
See and().

or(x1,x2)
See and().

ord(str)
or
ord(str,pos)
Returns the ASCII sequence number corresponding to the first character of the string argument: str. If the optional pos argument

is given, ord returns the ASCII sequence number of the character at that character position in the string, or -1 if pos is less than
one or greater than the number of characters in the string. This function is the inverse of the char function.

Examples:

BEGIN {
print ord("A") # Prints 65
print ord("ABC",2) # Prints 66
print ord("ABC",4) # Prints -1

outp(port,value)
outpw(pori,value)

[WARNING]
USE THESE FUNCTIONS WITH CARE! YOU CAN CRASH YOUR COMPUTER OR LOSE FILES BY IMPROPER USE!

- 105 -

Thompson Automation Seftware TAWK Compiler

These functions perform a low level /O function: output byte (outp) or output word (outpw) to the specified /O port with the
specified integer value. Under OS/2 or UNIX these functions do nothing. The DOS version of TAWK includes an example
program called "play.awk" that utilizes these functions to control the computer output speaker.

See also: inp(), inpw().

pack(template,val,...)
or
pack(template,array)

The pack() function packs the specified values into a binary structure described by the template string and returns the string
containing the resulting structure. The values can be specified immediately in the pack() function call (as in the first case above)

The template string consists of one or more binary format specifications, separated by spaces. Each format specification looks
like the following, and must appear all together without any intervening spaces. Square brackets: [] indicate optional items:
[name] @ [flags] [count] type

The name is the optional field name, the “@” sign is required, the flags and count are optional, and the fype is a required character
that indicates the binary type of the field. The type character is chosen from the following:

Type Meaning

a ASCII string, nul (zero) padded

A ASCII string, space padded

borBorc byte character. If the value is a number the least

significant byte is used. If the value is a string the
first character is used.

sorS short (16-bit) integer
lorL long (32-bit) integer (1is the letter ell) .. R
single precision floating point number

double precision floating point number

output a 0 byte

back up a byte

’U;><><D.’-+)

32-bit pointer to character string. If the value is a
number, it is assumed to already be a pointer and is
stored without modification as a long integer; if the
value is a string, a 32-bit pointer to that string is
stored. Note that strings used in TAWK are
deallocated when no longer needed. It is the
PROGRAMMER'S responsibility to make sure that
the string pointed to by the "p" type remains valid
over the life of the structure. You can do this by
keeping a reference to the string in a TAWK variable
or array. The internal details of how TAWK handles
strings are covered in chapter 16.

Note: the “s” and “S” types are the same when used with pack, but affect how the items are unpacked. Similarly for “]”
and “L”, and for “b”, “B” and “¢”. See unpack() for more information.

Pack Template Optional Numeric Count:

- 106 -

s P

,
floe”

ﬁ,@wmmmwwwwwmwwwwwwwwwwwwwwwwwwwwWW@@@W%@%@@W

Chapter 17 TAWK Built-In Functions

The optional count is a number that indicates the number of characters in the field for types “a” and “A”, or a field count
of the number of values to be consumed from the list of values for any other type. If no count is specified for types "a"
and "A" the length of the string (plus one for a terminator character) is used.

Pack Template Optional Flags:
The “a” and “A” types may optionally be preceded by the following flags:

Flag Meaning

+ Means right justify. (Default is left justify.) A field length
must be specified with this flag.

& Ignored by pack() function, used by unpack() function to
prevent stripping spaces or nuls from field;

The “s”, “S”, “17, “L”, “d” and “f” types may optionally be preceded by the following flags to control the byte ordering
and packing. By.default, the byte ordering is whatever the native ordering is on the host processor, and the items are
packed together as closely as possible.

In addition, the <, >, and # flags may appear in the template string outside of a format specification, in which case they
apply to all format specifications that follow them. For example: "@<S @<S" and "<@S @S" are equivalent.
Flag Meaning

> Pack bytes most significant byte first (default for most RISC
processors.)

“.

< Pack bytes least significant byte first (default for Intel 8x86
type processors.)

Insert padding before the field so that it is aligned on an N
byte boundary, where N is the length of the item in bytes.
This type of structure packing is used by many compilers.

If the values are provided to the pack() function in an array then the optional field names specified in the template string indicate
the indicies of the fields in the array. If no field names are specified in the template or if a field count is used then pack() assumes

the array indicies are integers: "1", "2", ...

Pack Template Examples:

"customer@a” customer is a nul terminated alpha field.
"highes” high is a short (16-bit) integer field.
‘name@+10A" name is a 10 character right justified space-

padded field.

The following example illustrates how to pack and unpack a structure called "complex" containing two floating point numbers
named "real” and "imag".

Note: In the C langauge this structure would be
declared as: struct complex { float real, imag; }
local complex = “"real@f imag@f"

Create an array (cnum) holding a complex number:
cnum["real"] 17
cnum["imag"] 22

I

- 107 -

~ed
N

Thompson Automation Software TAWK Compiler

Pack the complex number into a string.

String x is created as an eight byte string

containing the binary representation of the

numbers 17 and 22 in binary floating point format. x = pack(complex,cnum)

He e e

X can be unpacked back into an array as follows:
Array cnum2 is created as an exact replica of

the original array cnum.

unpack (complex, x, cnum2)

Note that you could also create x like this:
x = pack(complex,17,22)

The binary field names are optional.

This example creates a 10 byte string with
the byte values 65 to 74:

= pack("@10b",65,66,67,68,69,70,71,72,73,74)

65 is the ASCII value of the character "A"
66 of "B", etc, so this prints “ABCDEFGHIJ”:

print y

e M S e

If you unpacked the above you would get: - QB

tab[1l] = 65, tab[2] = 66, etc. 4%1E5

unpack ("@10b", vy, tab) - ,L
§ a4 Q

¥ The following two pack examples produce f‘g}
the same result in variable vy: ‘\Q?E
str = "a string"

vy = pack("@p",str)

y = pack("@l",addressof (str))

paste(string, string, ... , separator)
or
paste(list, separator)

The paste function returns a new string created by concatenating (pasting) together two or more strings, separated by strings
specified by the separator argument. The strings to be pasted can be specified directly as the string arguments in the first syntax
shown above, or can be provided in an array as the /ist argument in the second syntax shown above. The separator argument can
also be a string or an array. If the separator argument is a string, it is placed between each of the pasted strings. If the separator
argument is an array, the numbered elements of the array are used as the separator strings. If there are too few elements in the
separator array, the last element is used as many times as necessary. To paste together the strings with no separator, use an empty

string ("") for the separator. Examples:

BEGIN {
print paste("a","b","c") # prints acb
x[1l] = "a"; x[2] = "b"; x[3] = "c¢"
yI[l] = "e"; yl2] = "f"
print paste(x," ") # prints: a b c
print paste(x,y) # prints: aebfc

}

See also: split, splitp, which are the opposite of paste.

peek(address)

The peek() function reads and returns the byte at the specified memory address as an integer. The address is specified in the
native format of the operating system. Under DOS (except DOS/32) and OS/2 it is in 32 bit segment:offset form, that is, the upper
16 bits of address are the segment and the lower 16 bits are the offset.

- 108 -

Chapter 17 TAWK Built-In Functions

Hint: To convert the integer return value to a one character string use: sprintf("%c",peek(address)).

See also: poke().

poke(address,value)

[WARNING]
USE THIS FUNCTION WITH CARE! YOU CAN CRASH YOUR COMPUTER OR LOSE FILES BY IMPROPER USE!

The poke() function sets the byte at the specified memory address to the value, which must be an integer. The address is specified
in the native format of the operating system. Under DOS (except DOS/32) and OS/2 it is in 32 bit segment:offset form, that is, the
upper 16 bits of address are the segment and the lower 16 bits are the offset.

Hint: To poke the first character of a string use: poke(address,ord(string)).

See also: peek().

print
or
print(argument, argument ...)

This function prints its arguments separated by the value of the OFS (Output Field Separator) variable and terminated by the value
of ORS (Output Record Separator) variable. If no arguments are specified the current line ($0) is printed.

By default, the OFS variable is a space and the ORS variable is a newline ("\n") so this function prints its arguments separated by
spaces and automatically terminates the line.

Parentheses are optional for this function. For example: print and print() are equivalent.

The print and printf functions can be followed by a redirection indicating that the output is to go to a file or pipe. The allowed
forms of redirection are:

print(arguments)

If there is no redirection then output goes to stdout (standard output.) If the standard output was not redirected when the
command was invoked it appears on the user’s console.

print(arguments) > “filename”

Output goes to the specified filename. If this is the first print or printf to this particular file then the new data over-writes
the existing data in the file, if any. The file will be created if it did not exist. The filename can be specified with a literal
string as shown or in a variable or any valid TAWK expression that evaluates to a string containing a valid filename.

print{arguments) >> “filename”
Output is appended to the specified filename. The file will be created if it did not exist.

When > or >> redirections are used it is the first print or printf statement encountered when the program executes that
determines whether a file will be over-written or appended to. After the file is opened the > and >> symbols just
continue to append new data to the already opened file.

print(arguments) | “command”

This is an “output pipe”. The data is sent to the input of the specified command. The command can be specified with a
literal string as shown or in a variable or any valid TAWK expfession that evaluates to a string containing a command.

Under some operating systems the command is executed asynchronously, that is, it is started up and each print or printf
sends additional data to the command. Under DOS the data written to the pipe is saved in a temporary file and the
command is not executed until the the pipe is closed or the program ends.

Notes:

- 109 -

Thompson Automation Software TAWK Compiler

e A common mistake is to forget to put quotes around the output filename. The following code prints to the file specified in the
TAWK variable: filename rather than to the file "filename".

print > filename

The following are correct methods to print to a file named "filename":
print > "filename"
x = "filename"
print > x

e Another common mistake is to try to print a blank line with this:

print

But a "print" statement without arguments prints the current record (80). To print a blank line use this:

[t}

print
e If one of the arguments to print contains a greater-than (>) symbol then the argument list must be parenthesized to prevent
confusion over whether the > symbol means greater-than or output redirection. For example, the following statement is

ambiguous:

print a > b
Change it to one of the following:

print(a > b)
print(a) > b

printf(formart)
or
printf(format, argument, ...)

This function performs formatted printing giving the user complete control of the resulting output. This function prints the
optional list of arguments after performing conversions specified by the format string.

The parentheses are optional. For example, printf ("hello") andprintf "hello" are equivalent.

The format string may contain regular characters that are just printed and format specifications that always begin with the %
character. The format specifications in the format string are interpreted from left to right and each specification tells printf how to
format the next argument to printf. For example, both of the following print "hello world":

BEGIN {
printf "hello world\n"
printf "%s %s\n", "hello", "world"

}
The above examples include "\n" in the string because printf, unlike print, does not automatically append a new-line character to
terminate the output line unless it is included in the string.

Each format specification looks like the following. No spaces may appear in the format specification except as specifically

allowed below. Square brackets: [] indicate optional items:

% [flags] [wWww] [.NNN] x

The meanings of the parts of the format specification are:

% The % character is required.

flags The flags are optional characters that modify the formatting as described further below.

-110-

Chapter 17 TAWK Built-In Functions

WWW This is an optional numeric field width. If the converted value has fewer bytes than this number it is padded to fit this
field width.

.NNN This indicates an optional numeric precision argument. If it is specified it must be preceded by a period. The meaning of
this argument depends on the format: For integer number formats this argument indicates the minimum number of digits

to be printed. For %e and %f it indicates the number of digits to appear after the decimal point. For %g it indicates the
maximum number of significant digits to be printed. For %s it indicates the maximum number of character bytes to be

printed.

X This represents a format character, which must be one of those described below.

The valid format characters are as follows:

Format Meaning
sc ASCII character. If the argument is a string the first

character of the string is printed. If the argument is a
number the corresponding ASCII character is printed.

sd signed integer in decimal number format.

%1 same as %d

Bu unsigned 32-bit integer in decimal number format.

$b unsigned 32-bit integer in binary number format.

%0 unsigned 32-bit integer in octal number format.

Bx unsigned 32-bit integer in hexadecimal number format.

%e floating point number in format: [-]d.dddddde[+-]ddd

st floating point number in format: [-]ddd.dddddd

%g like %e or %f, whichever is shorter, with nonsignificant
trailing zeros suppressed.

%S string of characters.

Bm money format: negative numbers appear in parentheses, and
the default precision is two decimal places. Positive
numbers are preceded and followed by a space so that
positive and negative numbers printed in a column can
easily be lined up on the decimal point simply by specifying
a field width, for example %10m.

X like %x but uses capital letters "A" through "F".

SE like %e but print an uppercase "E" instead of "e".

8G like % g but print an uppercase "E" instead of "e".

=
o

just prints a regular % character and does not consume any
of the printf arguments.

The following flag characters may appear in a format specification following the percent character:

Flags Meaning

- The result is left-justified within the field width. Normally if
a field width is specified, then the result is right justified
within the field width.

+ Signed numbers will be preceded by a plus sign if the number
Is positive.

<space> (a space character) Print a space preceding the number if it is
positive. This is used to help line up numbers in columns.

-111-

Thompson Automation Software TAWK Compiler

A

Use engineering notation for %e or %g specifications.

Always print a decimal point for %e, %f, or %g
specifications. Normally the decimal point is suppressed if
there are no zeros following it.

0 If a field width is specified with a numeric format that is right
justified (that is, the — flag is not given), then the number is
expanded to fit the field width with extra leading O characters
rather than with space characters.

z Suppresses trailing insignificant zeros in %e or %f format.

1 An I character is ignored. In the C language it means a long
number but all numbers in TAWK are long by default.

The field width (WWW above) and/or precision (.NNN above) can be specified as an asterisk (*) instead of a number. In this case
the number to be used for the field width or precision is obtained from the next printf argument, which is consumed. Thus each
printf format specification can consume either 1, 2 (if either field width or precision is a *) or 3 arguments (if BOTH field width
and precision are a *) from the printf argument list,

Redirecting Printf OQutput:

The print and printf functions can be followed by a redirection indicating that the output is to go to a file or pipe. The allowed
forms of redirection are:

printf(format, arguments)

If there is no redirection then output goes to stdout (standard output.) If the standard output was not redirected when the
command was invoked it appears on the user's console.

printf(format, arguments) > “filename”

Output goes to the specified filename. If this is the first print or printf to this particular file then the new data over-writes
the existing data in the file, if any. The file will be created if it did not exist. The filename can be specified with a literal
string as shown or in a variable or any valid TAWK expression that evaluates to a string containing a valid filename.

printf(format, arguments) >> “filename”
Qutput is appended to the specified filename. The file will be created if it did not exist.

When > or >> redirections are used it is the first print or printf statement encountered when the program executes that
determines whether a file will be over-written or appended to. After the file is opened the > and >> symbols just
continue to append new data to the already opened file.

printf(format, arguments) | “command”

This is an “output pipe”. The data is sent to the input of the specified command. The command can be specified with a
literal string as shown or in a variable or any valid TAWK expression that evaluates to a string containing a command.

Under some operating systems the command is executed asynchronously, that is, it is started up and each print or printf
sends additional data to the command. Under DOS the data written to the pipe is saved in a temporary file and the
command is not executed until the the pipe is closed or the program ends,

PRINTF EXAMPLES

We placed the output of the following printf statements between bars Ilike this| $0 you can see precisely how the resulting output is
aligned and how many spaces are added.

String Format Examples

Printf Example |Resulting output |
printf "%s","Hello" |Hello |
- 112 -

.

ﬁ@@@@@@@@W@@@@@@@m@M@@mmmmmMMm

A A A S Al A A A A A A R A R AR AN RN R E R R R R .

Chapter 17 TAWK Built-In Functions
printf "$10s", "Hello" | Hello]

printf "%-10s", "Hello" |Hello |

printf "%3s", "Hello" |Hello]

printf "%.3s","Hello" |Hel]

printf "%10.3s","Hello" | Hel|

printf "%-10.3s", "Hello" |Hel |

printf "%c","Hello" [H|

printf "%c",65 |A|

Integer Number Format Examples

Printf Example
printf "%d",41
printf "%7d4",41
printf "%07d",41
printf "$-7d",41
printf "%.34",41
printf "%7.34",41
printf "% 4", 41
printf "%+d",41
printf "% 4", -41

|Resulting Output |
|41

| a1
10000041 |
|
|041 |
| 041 |
| 41|
| +41]
|-a1]

Alternate Number Base Format Examples

Note that these formats interpret the argument as a 32 bit unsigned quantity.

Printf Example

printf
printf
printf
printf
printf

"hex: %x",26
"binary: %b",41
"octal: %o",41
"unsigned: %u",41
"unsigned: %u",-41

|[Resulting Output |

|hex: la|
|binary: 101001]
|octal: 51|

|unsigned: 41]

|unsigned: 4294967255]

Floating Point Number Format Examples

Printf Example
printf "%e",41.5
printf "$f",41.5
printf "%g",41.5
printf "%$ze",41.5
printf "%.5e",41.5
printf "%.5f",41.5
printf "%10.5f",41.5
printf "%g",123456
printf "%g",1234567
printf "%$.3g",1234567
printf "%g",.000123
printf "%g",.0000123
printf "%m",41.5
printf "%$m",-41.5

[Resulting Output |

|4.150000e+01|
[41.500000|
[41.5]
|4.15e+01|
|4.15000e+01|
|41.50000]

| 41.50000]
[123456
|1.23457e+06]|
|1.23e+06|
[0.000123|
[1.23e-05]|

| 41.50 |

| (41.50) |

- 113 -

Thompson Automation Software TAWK Compiler

rand()

The rand() function returns a pseudo-random number in the range 0 <=r < 1. The srand() function can be used to set the seed for
the random number number generator. If srand() is not called the pseudo-random number sequence returned by rand() is the same

for each invocation of the program.

regex(string)
or
regex(string,flags)

"i"

The string is pre-compiled into a regular expression pattern. The flags argument may be "i" for ignore-case, "s" for shortest
match, or "is" for both. The resulting return value can be used anywhere a regular expression is expected: as a function argument
(for example with the split, sub, or match functions) or with the ~ or !~ operators.

Why would you use this function? In TAWK, regular expression matching occurs in two phases: first the regular expression is
compiled into an internal state machine, then the string to be matched is examined using that state machine. Compiling the state
machines is slow; examining strings with them is lightning fast. The regex() function compiles the regular expression so that
multiple compilations can be avoided. Note that if you know what the regular expression is at compile time you can specify the
regular expression /like this/ which also tells TAWK to compile the regular expression just once.

Examples:
BEGIN {
The "i" means case-insensitive matching:
x = regex("this is a pattern”, "i")

if {(match(y.,x)) print "it matched"
if (y ~ x) print "matched again"
}
To use the return value of the regex() function in the pattern part of a pattern-action block you should use the ~ operator as in the
following example:

BEGIN { re = regex("this is a pattern") }

$0 ~ re { print "current record matchest" }

registercailback(funname)

[Win32 version only]
The funname parameter is the name of a TAWK function, as a string. This function returns a function pointer that can be passed

to a Win32 function as a call-back function pointer, or 0 if it fails. When Win32 calls the callback function, your TAWX function
will be called. The TAWK function named by funname should have exactly four parameters. There are only a limited number of
callback functions available, so when the callback function is no longer needed, you should release it using the unregistercallback
function.

See also: the discussion of Dynamic Linking in the chapter on Calling External Functions, and the unregistercallback function.

rename(file1,file2)

This function renames file! to file2. This function can rename either files or directories. The filenames may not contain wildcard
matching characters. The restrictions of the underlying operating system apply: files may be renamed or moved within a disk
drive and partition but can not be moved to a different disk drive or partition. Under DOS and OS/2 directories may be renamed
but not moved to a new location in the directory tree. Returns 1 (TRUE) if it succeeds, or 0 (FALSE) if it fails.

- 114 -

Chapter 17 TAWK Built-In Functions

rindex(string1,string2)
or
rindex(string1,string2,end)
This function returns the largest index where string2 occurs in stringl, or 0 if string2 is not found in string!. If end is specified it
is the index of the last character of string! that will be considered in the match. For example:

rindex ("abcbc", "bc") # returns 4 rindex("abcbc","bc",4) # returns 2

See also: index function.

rmdir(dirname)

This function removes directory dirname. The directory must be empty of files. Returns 1 (TRUE) if it succeeds, or 0 (FALSE) if
it fails. Example:

rmdir ("C:\\usr\\patt")
or.

rmdir ("/usr/patt") # Works under both DOS and UNIX

rmfile(filename)

This function removes file: filename. The filename may not contain wildcard matching characters. Returns [(TRUE) if it
succeeds, or 0 (FALSE) if it fails.

rmfile ("C:\\usr\\patt\\profile.sh")
[UNIX Version]

Under UNIX, a single physical file may have more than one filename. Each filename is called a link to the actual physical file. If
there is more than one link to a file, the actual physical file will not be removed until every link to it is removed.

Screen /O Functions:

The following functions (with names beginning with scr_) directly manipulate the display screen. The row and column positions
are numbered starting at 0. For example, scr_scp(0,0) moves the cursor to the upper left corner of the screen.

Under DOS, high speed is obtained by using the direct video interrupt (number 16), thus bypassing the ANSL.SYS driver, if any.
When running under DOS, these functions require an IBM compatible computer and might crash non-IBM compatible computers.
(But almost all PC computers are IBM compatible these days.)

Under UNIX, the first call to any of these functions activates the “curses” function library. This has many side-effects, including
clearing the screen, and placing the keyboard in “cbreak” and “noecho” mode. Curses mode is automatically terminated before a
call to getline, fread, system, spawn or scr_end, or when the program ends.

scr_end()

[UNIX Version]
Under UNIX, this function terminates the "curses” function library and returns the terminal to normal mode. TAWK
automatically terminates curses before getline, fread, system or spawn functions, or when the program ends, so you should

normally not need to call this function.

[Other Versions]
This function has no effect.

-115-

Thompson Automation Software TAWK Compiler

scr_frame(title,x1, y1,x2,y2)
or
scr_frame(title,x1, y1,x2,y2,color)
Draws a box on the screen. This is typically used to draw window frames on character mode displays. The edges and corners of
the box are drawn using line drawing characters, if available on the terminal, otherwise + - and | characters. 7itle is the window

title, which is centered in the upper edge of the box. The upper left coordinates are given by x1,y1, and the lower right coordinates
by x2,y2. All coordinates start at (0,0) at the upper left corner of the screen. The optional color argument is the color of the box;

[UNIX Version]
TAWK attempts to obtain appropriate line drawing characters from the "curses" database. This does not always work, even if the
terminal supports line drawing characters.

scr_gem(scant,scan2)

[DOS, 0S/2 Versions]

The scanl and scan2 arguments should be variables. The current cursor starting and ending scan lines are returned in the variables
scanl and scan2. The starting and ending scan lines indicate the height of the cursor in scan lines. The number of scan lines per
screen character varies for different video display system:s,

[Win32 Version]
The scanl argument, which should be a variable, receives the current cursor height as a percentage between 0 and 100,

[UNIX Version]
The scanl argument, which should be a variable, receives the current cursor visibility, as inferred by the “curses” library. The
value returned is 0, 1 or 2.

scr_gep(row,column)

The row and column arguments should be variables. The current screen cursor position is returned in the varjables row and
column.

scr_get(len,row, column)

Returns the text string of length: len from the screen at position row and column. Only the text at that position is returned: the
attribute bytes are ignored.

scr_getcells(len,row,col)

Returns the cell string of length: len from the screen at position row and column. The cell string consists of pairs of bytes where
the first byte is the character and the second is the attribute.

scr_put(string,row, column)
or
scr_put(string,row,column, attr)

Places the text string on the screen at the position specified by row and column. If attr is specified, it is the attribute byte of the
characters written to the screen, otherwise the current screen attributes are left alone. The attribute byte has different meanings for
different displays, but for most color displays the bottom four bits are the foreground color, the next three bits are the background
color (which restricts the background color to colors 0 to 7 below), and the upper bit, if set, usually causes the character to stand-
out in some way, such as blinking. The colors are defined as follows:

0 black 8 gray
-116-

b
b
»
b
p
p
p
p
b
b
B
b
b
b
b
4
b
b
p
b
b
b
B
b
b
b
b
p
b
b
b
b
b
b
p
b
b
b
b
b
b
b

Chapter 17 TAWK Built-In Functions
1 blue 9 light blue
2 green 10° light green
3 cyan 1 light cyan
4 red 12 light red
5 magenta 13 light magenta
6 brown 14 light yellow
7 white 15 high-intensity white
[UNIX Version]

TAWK attempts to set the colors using the "curses” database. This is notoriously unreliable. On monochrome terminals the
colors are ignored except: an attribute of 0x70 (black-on-white) should produce reverse video; if the high bit (0x80) is set, the

terminal’s stand-out mode is selected, if possible.

scr_putcells(string,row,column)

Puts the cell string to the screen at position row and column. The cell string consists of pairs of bytes where the first byte is the
character and the second is the attribute.

scr_refresh()
or
scr_refresh(flag)

[UNIX Version]
This function controls automatic screen refresh mode. By default, automatic refresh mode is ON. If the optional flag argument is

0, automatic refresh is turned OFF. If the optional flag argument is 1, the screen is immediately refreshed, and automatic refresh
mode is turned ON. If automatic refresh mode is on, the screen is refreshed after every scr_ function. If automatic refresh mode
is off, your program must refresh the screen, when desired, by calling scr_refresh. If no arguments are supplied to scr_refresh, the
screen is refreshed immediately, but the state of the automatic refresh mode is left unchanged. This function is provided because
screen refresh using the "curses” library (used by TAWK) is extremely slow on some terminals, and it may be quicker to buffer up

many changes to the screen and send them all at once.

[Other Versions]
This function has no effect.

scr_scm(scani,scan2)

[DOS, OS/2 Versions]
Sets the cursor starting and ending scan lines. This function can be used to set the height of the cursor.

[Win32 Version]
Scanl is the desired height of the cursor as a percentage from 0 to 99. For example, scr_scm(0) removes the cursor, and

scr_scm(99) makes it the full height of the character cell.

[UNIX Version]
TAWK attempts to set the cursor visibility using the curses library curs_set() function. The scan/ argument should be 0, 1 or 2 to

select among different cursor types.

See also: scr_gem().

scr_scp(row,column)

Sets the screen cursor position the specified row and column.

-117 -

Thompson Automation Software TAWK Compiler

setawkvar(variable_name, value)
or
setawkvar(variable_name,value, flag)

Sets the value of the specified TAWK variable to the specified value. If the optional third flag argument is 1 and the specified
value is a string then it is treated the same way TAWK treats input fields, that is, the string is examined and treated as a number if
the string contains only a valid number.

Only variables that are declared global and that are not arrays can be set by setawkvar. An exception: if your program consists of
a single source file then all variables are automatically considered global.

The following example prints "17".

global x

BEGIN {
setawkvar ("x",17)
print x

shifti(x7,x2)
shiftr(x1,x2)
Shiftl does a left shift and shiftr does an arithmetic right shift. X1 is the number to shift, and x2 is the number of bit positions to

shift. X7 is coerced to a 32 bit integer. The arithmetic right shift performs sign extension, that is, the top-most bit (which is the
sign bit) is duplicated in each bit position that is shifted in. See also: and(). Examples:

BEGIN {
printf ("0x%$x\n", shiftl(4,1)) # prints 0x8
printf ("0x%x\n", shiftr(4,1)) # prints 0x2

The shiftr function performs sign extension:
The following prints Oxffff0000
printf ("0x%x\n", shiftr (0x80000000,15))

sin(x)

Sine of x. X is in radians. See also: cos().

sleep(seconds)

This function delays execution for a specified number of seconds, which may be expressed as an integer or as a floating point
number. Under DOS, this function is implemented as a busy loop with accuracy only to within the accuracy of the IBM-PC clock,
which is about 1/18 second. Under other operating systems, this function yields control to the operating system so that other
programs can run. The delay may be longer than that specified if the operating system does not return control to the TAWK
program promptly after the sleep time has expired. Example:

sleep(l.5) # Waits 1 1/2 seconds

- 118 -

s s,

o DR T SN

Chapter 17 TAWK Built-In Functions

spawn(command)

or
spawn(command,environment)

or
spawn(command,environment,flags)

This function runs the command and returns the exit status of the command, or -1 if the command could not be run. The command
typically includes a program name and the program arguments separated by spaces. The program may not run if it can not be
found, if there is not enough memory, or if too many files are open. If the program is specified without a path, then the program is
searched for using the PATH, as specified in the ENVIRON array, or in the environment array. If the optional second
environment argument is specified, it is an array containing the environment strings to be passed to the program, and defaults to
the ENVIRON array.

If the optional third flags argument has the value 1, the command is executed asynchronously, if this is possible in the operating
system, and spawn returns the process id of the child process rather than the command exit status.

Under DOS, Win32 or OS/2, the spawn() function differs from the system() function in that it executes the program directly rather
than starting a copy of the command interpreter to do it. It is therefore faster, uses less memory and returns the true exit status of
the program under DOS. However, note that batch files and built-in functions (like the "dir" command in DOS) are executed
directly by the command interpreter and so must be run using the system() function rather than spawn().

[DOS Version]
The flags argument is ignored, as there is no multi-tasking under DOS. In the 16-bit DOS version, there is a maximum limit on

the size of the environment passed to the called program. See the SYSSWAP variable for more information.

[OS2 Version]
OS2 presentation manager programs (these are programs that do graphics under OS2) can not be run with spawn: use system()

instead.

[UNIX Version]
The shell specified in the "SHELL" environment variable is invoked to execute the command.

[Other Version Differences]
The DOS, OS/2 and Win32 versions look in the current directory for the program before searching the PATH. UNIX searches

using the PATH variable only, and does not check the current directory unless the PATH contains a "." entry.

See also: system(), ENVIRON, SYSSWAP.

split(string,array_name)
or
split(string,array_name,fs)

This function splits the string into fields. The array_name argument is the name of a variable that receives an array containing
the fields found in string. The first field is returned in array_name[1], the second in array_name[2], etc.

The fs argument indicates the field separator to be used to break up the fields. If the fs argument is not specified the current value
of the FS variable is used. The way the fields are determined depends on the value of the fs argument (or FS variable) as follows:

"o

FS is a space:
This is a special case that indicates that the fields are delimited by any run of white space characters. Additionally, any
leading or trailing white space characters in string are ignored. If you want to specify that the field separator is really just

a single space use: // or "[1"

FS is any other single character
That single character is the field separator. If the field separator character appears at the beginning or end of string or if
two of the field separator characters are adjacent in string it indicates an empty field at that position.

- 119-

Thoempson Automation Software TAWK Compiler

FS is an empty string: ""
This is a special case that causes the string to be broken up into individual characters. Thus the returned array contains

one of the characters of string in each array element.

FS is a multi-character string:
The string is interpreted as a regular expression pattern. The fields in string are separated by non-zero non-overlapping

runs of characters that match the specified regular expression.

ES is a regular expression pattern:
The regular expression pattern specifies the field separator. The fields in string are separarated by non-zero non-

overlapping runs of characters that match the specified regular expression.

The return value of the split function is the number of fields found, which is also the number of elements in the returned array.

Examples:

BEGIN {
split(" a b c¢",tab," ")
print tabll] # Prints:
print tab[2] # Prints:
print tabl[3] # Prints:

Qoo

split("a||b", tab, "|")

print tab[1] # Prints: a
print tabl[2] # Prints nothing:
print tab[3] # Prints: Db

To set the separator to a real space, use this:
(Note there are two spaces between
the a and the b)
split("a b",tab,/ /)
print tab[1] # Prints: a
print tab[2] # Prints nothing:
print tab([3] # Prints: b
}

See also: splitp(), and paste(), which is the opposite of split().

splitp(siring,array_name)
or
splitp(string,array_name,fp)
This function splits the string into fields. The array_name argument is the name of a variable that receives an array containing
the fields found in string. The first field is returned in array_name[1], the second in array_name[2], etc.

The fp argument indicates the pattern specifying what is allowed in a field. If the fp argument is not specified the current value of
the FPAT variable is used. The fp argument can be specified as a regular expression or as a string that will be interpreted as a
regular expression pattern.

The return value of the splitp function is the number of fields found, which is also the number of elements in the returned array.

Note that this function is identical to the split() function, except that it differentiates the fields in the string based on the pattern
that matches the fields themselves rather than the pattern that matches the separators between the fields.

Example:

The splitp function is particularly useful for tokenizing program files. In these cases the presence or absence of space between
tokens is irrelevant and all that matters is the pattern that specifies the tokens to be recognized. For example, the following
program tokenizes a simple language consisting of alpha-numeric identifiers, +, -, *, / and = :

- 120 -

i

.

P

.

GV I R I R S S S SN @ A S B S M O O S D M W M W w6 A e am

=N

P W W W W W T T W W0 W W 00 WS W W9 W T W W W W W W W @@ W W W O G s wne

Chapter 17 TAWK Built-In Functions

BEGIN {

str = "a = b+c" # String to tokenize
fpat = /[a-zA-Z0-9]1+| [-+*/=]1+/
splitp(str,x, fpat)

for (i in x) print "." x[i] ".

}

The above program tokenizes the string "a = b+c" and prints:
prog g

+ o u

.C.

Note that anything that is not matched by fp is thrown away. For example, the above program when given the string: str = "a =
b%c" will throw away the "%" character because it is not included in the fp pattern and is therefore considered part of the
separator between the fields. When using this function make sure you include every pattern you need to match in fp.

See also: split(), FPAT.

sprintf(format)
or
sprintf(format,value,...)

This function formats the specified list of zero or more values using the format string and returns the resulting string. The format
string is the same as for the printf() function. See printf() for more information.

sqrt(x)

Returns the square-root of x.

srand()
or
srand(seed)
This function sets the seed for the random number generator and is used to generate a repeatable sequence of pseudo-random

numbers. If no seed is specified, srand() generates a new semi-random seed using the time of day. Use the rand() function to
obtain pseudo-random numbers. If srand() is not called the random number sequence returned by rand() is the same for each

invocation of the program.

stat(filename)
or
stat(filename,info)

This function determines if a file exists, and optionally returns information about filename in the info array. The filename may be
a file or dircctory name, or an open file descriptor, such as returned by the fopen function. The stat() function returns TRUE (1) if

the file or directory exists, or FALSE (0) if it does not.

Note: If the filename is the UNC filename for the root directory of a remote system, for example: /machinenamelresourcename/
you must make sure to include the final slash, or stat may return FALSE even though the directory exists.

The info argument, if specified, should be a variable, which is returned as an array containing the following elements:
"SIZE" File size, in bytes.
"MODE" File mode, see below.

-121-

Thompson Automation Software

TAWK Compiler

"MTIME"

"ATIME"

"CTIME"

"NLINK"
"DEV"
"RDEV"
"UID"
"GID"
"INODE"

Time file was last modified.

Time file was last accessed, if known. If not, this field may
contain garbage.

Time file was created, if known. If not, this field may
contain garbage.

Number of links to file. [UNIX only]

Internal information about the file. [UNIX only]
More internal information about the file. [UNIX only]
File owner Identifier. [UNIX only]

Group Identifier. [UNIX only]

Inode number. [UNIX only]

The file mode, as provided by info["MODE"], is a bit field. The low order 16 bits of the mode contain the UNIX compatible
mode bits for the file. The meaning of the individual bits are as follows:

0x100

0x80

0x40

0x20

0x10

0x8

Ox4

0x2

Ox1

{ UNIX Version]
The other mode bits are used internally by UNIX. If you wish to decipher their meaning,

UNIX Compatible File Modes
read permission for file owner
write permission for file owner

execute permission for file owner, or search permission for
directory owner

read permission for file’s group
write permission for file’s group

exccute permission for file’s group, or search permission for
directory’s group

read permission for others
write permission for others

execute permission for others, or search permission for
directory by others

particular UNIX implementation.

{ DOS, Win32 and OS/2 Versions Only]
All files always have read permission for owner, group and other. If the file has write permission (i.e., the file is read-only), all

three write permissions for owner, group and other will be set. In addition, the PC-specific fil

order 16-bits of the mode. These bits may be set as follows:

0x10000

0x20000

read-only attribute

hidden attribute

- 122 -

you will need documentation for your

e attributes are returned in the high

-

s

Chapter 17 TAWK Built-In Functions
0x40000 system attribute
0x100000 directory attribute
0x200000 archive attribute
strdup(string)
or

strdup(string,ncopies)

If there is only one argument this function allocates and returns a new copy of string. This is normally unnecessary but is
sometimes useful when interfacing to C routines to make sure that you have a new copy of string. If the ncopies argument is
specified strdup returns a new string containing that many adjacent copies of the string. Examples:

strdup ("a", 1) # Returns "a"
strdup ("ab", 3) # Returns "ababab"”

Substitution Functions: sub, subs, gsub, gsubs

sub(pattern,replacement)
or
sub(pattern,replacement,variable_name)

or
sub(pattern,replacement,variable_name,flag)

This is a family of four functions that perform substitutions in a string. The mnemonic for the functions names are:

Function What it does

sub substitute for regular expression

subs substitute for string

gsub global substitute for regular expression
gsubs global substitute for string

The syntax of all four functions is identical to the sub function shown. All four functions substitute occurrences of the specified
pattern with the specified replacement string. The sub and gsub functions interpret the pattern as a regular expression. The subs
and gsubs functions interpret the pattern as a plain string to look for.

The sub and subs functions substitute only the first occurrence of the pastern found. The gsub and gsubs functions substitute all
non-overlapping occurrences of the pattern found.

If variable_name is specified, it should be a variable that contains a string; the substitutions are made on the string contained in the
variable. The substitutions occur IN PLACE, that is, the contents of the variable are changed. This is a technique called pass-by-
reference and is used in only a few places in TAWK. If a variable_name is not specified the substitutions are made in the current

record ($0) instead.

The optional flag argument controls interpretation of the replacement string. If the flag is O, the replacement string is used as is,
withott any interpretation. If the flag is 1 (the default) the replacement string undergoes interpretation as follows: each occurrence
of an ampersand (&) character in the replacement string is replaced by whatever part of the string was matched by the pattern.

For the sub and gsub functions only: each occurrence in the replacement string of $n, where n is a digit, is replaced by whatever
part of the string was matched by the nth set of parentheses in the pattern. $0 means the same as &. Both & and § can be
preceded by a backslash to insert a normal & or $ in the replacement string.

- 123 -

Thompson Automation Software TAWK Compiler

Return value: These functions return the number of substitutions made.

Examples:
BEGIN {
X = "masasapa"
sub(/a/,"1i",x)
print x # Prints "misasapa"

gsub(/a/,"i",x)
print x # Prints "misisipi™

gsub(/i(.)/,"18181",x)
print x # Prints "mississippi"

gsub(/1i(.)/,"1i%1",x,0)
print x # Prints "milsilsi$lpi”

gsubs (n$1n , uSn IX)
print x # Prints “"mississispi®

}

For the sub and gsub functions, the regular expression can be given as a literal regular expression /like this/ or in a string "like
this". If the regular expression is specified as a literal string, remember that the string will undergo two levels of backslash
interpretation: one when processing the string and another when processing the regular expression. For example:

BEGIN {

path = "C:\\usr\\patt"

gsub (/\\/,"/".x)

print x # Prints "C:/usr/patt"®

path = "C:\\usr\\patt"

gsub ("\\\\","/" .x)

print x # Prints "C:/usr/patt"
}

substr(string,startpos)
or
substr(siring,startpos,length)

When used as a function substr() returns the sub-string of the specified string starting at position: startpos. If length is specified it
specifies the maximum length of the returned string. Examples:

BEGIN {
print substr ("abcdef", 3) # Prints: cdef
print substr ("abcdef", 3,2) # Prints: cd

substr(variable_name,startpos) = replacement
or
substr(variable_name,staripos,length) = replacement

In TAWK you can use the substr function on the left hand side of an assignment. The variable_name argument is a variable that
contains a string that you want to modify. This use of substr replaces the substring of the string contained in the variable starting
at startpos and continuing length characters with the replacement on the right hand side of the assignment. The length of
replacement string does not have to be the same as the substring that is being replaced. In fact, the length specified to substr can
be 0 to indicate that the string is to be inserted at the specified position. If length is not specified it defaults to replacing the entire
string from startpos on. For example:

S124-

@@@@a@@@@@@@@@@@@@@@m@@ww,@iwwm»@@@a@waa%maf@@x&

Chapter 17 TAWK Built-In Functions
BEGIN {
X = "abcd"
substr(x,2,2) = "xyz" # Replace "bc" with "xyz"
print x # Prints: axyzd
substr(x,2,3) = "" # Removes "xyz"
print x # Prints: ad
substr(x,1,0) = "hello" # Inserts "hello"
print x # prints: helload

}
This form of substr is commonly used in conjunction with the match statement, which sets the RSTART and RLENGTH variables
to the start and length of the substring that was matched. For example:

BEGIN {
x = "abcd"
if (match(x, "bc")) {
substr (x, RSTART, RLENGTH)

I

"this replaces bc* }
}

Beware the following potential problem:
BEGIN {

while (match(x,"bc")) {
substr (x, RSTART, RLENGTH)

"this replaces bc"

)
3

This code will run forever because the replacement string also contains "bc”, which will also be matched and replaced, and so on
forever. Use the gsub function in this case, or specify a starting index for the match function and make sure that you always
advance the starting index beyond the end of the replacement string.

system(command)

The system() function runs the specified command, which typically consists of a program and program arguments separated by
spaces. The program is run using the operating system’s command interpreter. This allows thecommand to be any type of
executable program including internal commands like "dir" (DOS) or "set" (UNIX) or a batch file or shell script. This is different
from the spawn() command, which invokes a program directly without using the command interpter. If no error occurs, the
system() function returns the exit status of the command interpreter after executing the program. (Except under DOS: see below.)

The path of the the command interpreter used by system() is specified by an environment variable in TAWK’s ENVIRONarray.
Under DOS, 0S/2 and Win32 it uses the "COMSPEC" environment variable, and under UNIX it uses "SHELL". This
environment variable is usually pre-set to the path of the command interpreter by the operating system, so you don’t have to worry
about it. You can cause the system() function to use an alternate command interpreter simply by changing this environment
variable in TAWK’s ENVIRON array. For example, under DOS or OS/2 you can specify the Thompson Toolkit Shell as the
command interpreter by setting:

BEGIN { ENVIRON["COMSPEC"] = "C:/usr/bin/sh.exe" }

If the command interpeter program specified in the ENVIRON array can not be found or fails for some reason, there may be ne
warning message printed, but the system() function will return an error code of -1.

[DOS Version]

The exit status of command.com is always 0! So the return value of system() does not reflect the exit code of the executed
command. There is also no way to detcct if the program invoked by the system() function was abnormally terminated by a *C
interrupt. If you need reliable exit codes, cither use the spawn() function or use a better command interpreter like the Thompson

Toolkit Shell.
Under DOS there is a maximum limit on the size of the environment passed to the called program. See the SYSSWAP variable

for more information.

- 125 -

Thempson Automation Software TAWK Compiler

Warning: Microsoft has indicated that the system() function may not execute properly under MS-DOS version 2. We tested under
MS-DOS version 2 and had no problems, but be warned.

For more information see: ENVIRON array, SYSSWAP variable.

table(index1,valuel, ...)

The table function creates a TAWK table (or array) from a list of pairs of indicies and values. The first argument is the first index,
the second argument is the first value, etc. The number of arguments to the table function must be even. For example: the
following code:

BEGIN { x["a"] = "this"; x["b" 1 = "those" }

is identical to:

BEGIN { x = table("a","this“,"b“,”those"); }

To create an array, every other argument to the table function would be the integer array number, for example:

BEGIN { x = table(l,”this",2,"those"); }

time()
or
time(year,month, day, hour,minute,second)

Time() without arguments returns the current time as an integer with resolution in seconds. Up to six optional arguments may be
given to convert a specified date and time to an integer. Not all arguments need be given; unspecified arguments default to the
lowest value. A warning message is printed if the year or month is out of range; no checks are made on the other arguments. The
ranges of the optional arguments are:

Element Range

year 1980 - 2100

month I-12

day 1-31

hour 0-23 (0 means between midnight and 1 am)
minute 0-59

second 0-59

Warning: If you are comparing the return values of the time() and/or filetime() functions to determine which of two times is more
recent do not go beyond the year 2038. The Integer values returned for dates beyond year 2038 are actually negative numbers so
they do not compare properly with dates before year 2038.

timetab(table)
or
timetab(fable,timeval)
Timetab() returns the current date and time or, if the timeval argument is specified, the date and time indicated by timeval, 1f

timeval is specified it is a time number that was returned by the time() or filetime() functions. The date and time are returned in
the fable variable, which is converted to an array whose elements are as follows:

-126-

=N P —

Chapter 17 TAWK Built-In Functions
Element Range
"YEAR" 1980 - 2100
"MONTH" 1-12
"DAY" 1-31
"HOUR" 0-23 (0 means between midnight and 1 am)
"MIN" 0-59
"SEC" 0-59
"WEEKDAY" 1-7 (1 is Sunday, 2 is Monday, ...)
"YEARDAY" 1-366 (Ordinal day of the year)

The following example prints when the file "/config.sys" was last modified:

BEGIN {
when = filetime("/config.sys")
timetab (x,when)
printf("config.sys was modified on: %d:%d:%d\n",
x["MONTH"],x["DAY"],x["YEAR"])

)

See also: ctime().

toupper(string)
and
tolower(string)
These functions return a string that is the same as the argument string but with characters converted to upper case or lower case.

For example:

BEGIN ({

x = tolower ("ABC")

print x # Prints: abc
}

translate(string,searchlist,replacementlist)

or
translate(string,searchlist,replacementlist,flags)

This function returns a string that is the same as the string argument but that is translated by replacing all occurrences of the
characters specified in the searchlist with the corresponding characters in the replacmentlist. The first character in the searchlist
is translated to the first character in the replacementlist, the second to the second, etc. If the replacementlist is an empty string the
characters in searchlist are just deleted. If the replacementlist is shorter than the searchlist the last character is replicated as
necessary, unless "d" is included in the optional flags argument. Both searchlist and replacementlist can include ranges of the
form: "a-z", which means all characters from "a" to "z", inclusive. Character ranges can be reversed, for example, "a-d" means
"abcd", and "d-a" means "dcba". To include a dash character ("-") in the list it must be the first or last character in the list, or the
"n" option must be specified. The optional flags argument is a string of characters that are options with meaning as follows:

"d" Delete: If scarchlist is longer than replacementlist then characters in searchlist that do not have a translation specified
by replacementlist are deleted. Normally these characters would be translated to the last character of the
replacement list.

s Squeeze: Translations that would result in adjacent identical characters from replacementlist in the output string are
replaced by (squeezed into) a single instance of that character. Note that only characters that are translated are
squeezed. Characters that do not appear in searchlist are left alone.

- 127 -

Thompson Automation Software

TAWK Compiler

Complement: The searchlist used by translate is the complement of the specified searchlist. That is, the searchlist

Convert str to upper case: This is like
the toupper() function but it can be

modified to handle non-English languages.
result = translate(str,"a—z",“A—Z")

Reset the high bit of each character in str:
(This is useful for WordPerfect files)
result = translate(str,"\XBO—\xff",“\xO-\x?f")

Change all white space characters to spaces.
result = translate(str," \t\xr\n"," ")

Use the squeeze option to change all sequences

of one or more white space characters to a
single space:
result = translate(str, " \ENx\n", " o mgn)

Use the complement option to change all
non-alphanumeric characters into spaces:
result = translate(str,"a—zA~ZO—9",“ et

Delete all non-alphanumeric characters:
(The "d" option could be included but is not
necessary in this particular case because

ist and replacementlist, so for example, "a-c”

CE
used by translate is composed of all characters that do not appear in the searchlist.
"n" This option suppresses interpretation of character ranges in the searchl
would mean "a-c" instead of "abc".
Examples:
BEGIN {

replacementlist is empty.)

P

= translate(str,"a-zA-Z0-9", ",

c")

typeof(x)
Returns a string corresponding to the type of x. The possible return values are:
tint" integer;
"float" floating point number;
“string" string;
"array" any type of array or table;
'regex" aregular expression pattern;
"fileid" aﬂkdewﬁpmrﬁonuheﬂmmﬁ)mnakm;
"uninitialized* an uninitialized variable; (This variable will act
likea 0, or ", depending on use.)
"address" the result of the addressof() function;

"unknown*" any other type.

unpack(template,string,array)

The unpack() function assumes that the string has a binary structure described by the template string and expands the individual

elements of the structure into an array of values. The array argument must be the name of a variable in which the resulting array

is returned. The unpack() function does the opposite of pack(). The same template string can be used to both the pack() and

unpack() functions. These two functions together can be used to read/write to binary data-

passed to/from C programs.

- 128 -

bases or to pack/unpack structures to be

- e

CREeT g e ad g aa & A & & & e oo oo

G

R R T T R PPV P T DY DD T TS

Chapter 17 TAWK Built-In Functions

The template string consists of one or more binary format specifications, separated by spaces. Each format specification looks
like the following, and must appear all together without any intervening spaces. Square brackets: [] indicate optional items:

[name |} @ [flags |1 [coumt] type
The name is the optional field name, the “@” sign is required, the flags and count are optional, and the fype is a required character
that indicates the binary type of the field.

If the optional name is specified, the unpack function uses it as the index of the array element created to hold that field. Fields
without names are returned in array elements with ascending numeric indicies, i.e., the first is returned in array[1], the second in

array[2], etc.
The format type character is chosen from the following list:

Pack/Unpack Format Characters

ASCII string, nul (zero) padded

a
A ASCII string, space padded.- | ‘ | t \ .
b signed byte - 1o {)}/’ R

B unsigned byte T

c

one character string

signed short (16-bit) integer N
unsigned short (16-bit) integer

signed long (32-bit) integer ~
unsigned long (32-bit) integer

single precision floating point number

double precision floating point number

move forward one byte, i.e., skip the next byte

move backward one byte

32-bit pointer to string, which must be 0 (NULL) or
must point to a valid string. If the pointer is 0, a
NULL value (also called an uninitialized value) is
stored in the corresponding array element. If the
pointer is non-0, the nul-terminated string pointed to
by this 32-bit pointer is copied into TAWK's memory
as a string, which is stored in the corresponding array
element. Note that your TAWK program may crash
if the 32-bit pointer is invalid.

T M X e — oy »
o

NOTE: When you unpack a floating point number, you better make sure the binary string really contains a valid floating point
number or you may get an error message, either when it is unpacked or later when you try to use the number.

66,93

The “type” character may optionally be preceded by a number that indicates the number of characters in the field for types “a” and
“A”, or a field count of the number of values to be consumed from the list of values for any other type. If no count is specified for
types “a” or “A”, unpack consumes characters from the string until the terminator character (either nul for “a” or space for “A”) is

found.
The “a” and “A” types may also optionally be preceded by the following flags:

+ Value is right justified. (Default is left justified.)
A field length must be specified with this flag.

& Prevents stripping spaces or nuls from the field;

The “s”, “S”, “I”, “L”, “d” and “f” types may optionally be preceded by the following flags to control the byte ordering and
packing. By default, the byte ordering is whatever the native ordering is on the host processor, and the items are packed together

as closely as possible.

-129-

Thompson Automation Software TAWK Compiler

Flag Meaning
> Pack bytes most significant byte first (default for most RISC
processors.)

< Pack bytes least significant byte first (default for 8x86 type
processors.)

Insert padding before the field so that it is aligned on an N
byte boundary, where N is the length of the item in bytes.
This type of structure packing is used by many compilers.

In addition, the <, >, and # flags may appear in the template string outside of a format specification, in which case they apply to all
format specifications that follow them. For example: "@<S @<S" and "<@S @S" are equivalent.

See the pack() function for examples using unpack().

unregistercallback(funname)

[Win32 version only]
The funname parameter is the name of a TAWK function. You can only use a limited number of TAWK functions (currently,

three) as callback functions simultaneously. This function tells TAWK that the specified TAWK function is no longer being used
as a call-back function.

See the discussion of Dynamic Linking in the chapter on Calling External Functions, and the registercallback function.

xor(x1,x2)
See and().

- 130 -

Chapter 18 TAWK Built-In Variables

Chapter 18: TAWK Built-In Variables

ARGC

This is the number of program arguments plus one. The "plus one" is for the program name that is also contained in the ARGV
array. For example, if there are no program arguments, ARGC = 1; if there is one program argument, ARGC = 2; etc.

When TAWK is looking for a program argument to be processed by the Automatic Input Loop, it looks only as far as
ARGV[ARGC-1]. If you add new elements to the ARGV array that you want the Automatic Input Loop to process as program
arguments, you must also increase the value of ARGC appropriately.

See also: ARGI, ARGV, and the chapter on Program Arguments.

ARGl

This is the index in the ARGV array of the next program argument that will be processed by TAWK’s Automatic Input Loop.
ARGI is initialized to 1, so the first argument that TAWK processes is ARGV[1]. You can change ARGI if you wish and TAWK

will use the new value as the index of the next program argument to process.

See also: ARGC, ARGV, and the chapter on Program Arguments.

ARGV
This variable is an array that contains the program name and arguments. The program name is in ARGV[0] and the program
arguments, if any, are in ARGV[1], ARGV[2], etc.

Normally the program arguments are separated by spaces. To include a space in a program argument, surround the argument with
quotes on the command line "like this".
Under DOS, the ARGV[0] element contains the full pathname of the executable program. Under other operating systems or in a

bound program (that runs under both DOS or 0S2) ARGV[0] usually contains the actual path, if any, used to invoke the program.
If the program was found in the current directory, the directory part of the path may be missing. If the program was entered

interactively, ARGV[0] contains just "awk".

See also: ARGC, ARG]I, and the chapter on Program Arguments.

BUFSIZE

For experts: This variable specifies the size of input/output buffers used internally by TAWK. Sometimes, you can optimize the
speed of input/output operations by increasing this size. BUFSIZE is used only when a file is first opened, so you must set it
before opening the file. Setting BUFSIZE to a size larger than 65535 has no effect. Under DOS, and particularly if no memory
manager (like smartdrv) is in use, the best performance is usually obtained by setting BUFSIZE to the "cluster” size of your disk.
Under most other operating systems, input/output is buffered more effectively, and changing BUFSIZE will probably have little

effect.

CONVFMT

FOR EXPERTS ONLY! This variable contains the format specification that is used when it is necessary to automatically convert
a floating point number into a string anywhere in the program except for an output statement, for example, the printor printf
statements, where OFMT is used instead. The format specification is in the same format as used by the printf statement. See the
printf statement for a list of valid formats. The default format is "%.6g". Note that CONVEMT affects only floating point

numbers, not integers.

-131-

Thompsbn Automation Software TAWK Compiler

Changing CONVEMT can change the format of the strings used for array indicies if the indicies happen to be floating point
numbers. This can create surprising results. The following example illustrates this, where the exact same statement can create
two different array elements depending on the value of the CONVEMT variable:

BEGIN {
i=1.5+ 1.5
x[1] = "this"
This creates array element x["3"]
CONVFMT = "%.2f"
This now creates array element x["3.00"]
x[1] = "this"

}

DLLS

This variable is a string containing a space-separated list of filenames that are the Dynamic Link Libraries (DLLs) that TAWK
should automatically search to find extern functions that were declared without any specific DLL name. This variable is
initialized to a list of DLL filenames that contain the most commonly used DLL functions for each operating system supported.

EMSLIMIT - see XMSLIMIT below.

ENV

This is the old name for the ENVIRON array. It is set to the same array as the ENVIRON array when the program starts. For
new programs use ENVIRON instead of ENV.

ENVIRON

This variable is an array. The environment strings are available in TAWK in the built-in array variable: ENVIRON in the format:

ENVIRON["NAME"] = "value".

For example, the minimum environment under MS-DOS would be:
ENVIRON["COMSPEC"] = "C:\\command.com"
ENVIRON["PATH"] = "C:\\dos;C:\\usr\\bin"

Note that the names of the environment variables are case-sensitive; you must specify ENVIRON["PATH"], not
ENVIRON["path"]. Remember also that if you need to use a backslash in a string in any TAWK program you must use two
backslashes because backslash is the string escape character.

Changes to the environment made by modifying the ENVIRON array are passed to commands invoked by the TAWK system()
and spawn() functions.

ERRNO

This variable is of little value but is included for use by experts. ERRNO contains the ANSI compatible error code after an
operating system function returns an error. This error code is compatible with the errno variable in ANSI-compatible C
compilers. This variable is often set whether an error occurs or not, so its value is only valid after an error occurs, for example,
when a file can not be opened. Note: prior to TAWK version 5, ERRNO contained the operating system specific error code; this
value is now returned in ERRNO_OS.

-132 -

¥

Chapter 18 TAWK Buil¢t-In Variables

ERRNO_OS

This variable is of little value but is included for use by experts. ERRNO_OS contains operating system specific error code after
an operating system function returns an error. This variable is often set whether an error occurs or not, so its value is only valid
after an error occurs, for example, when a file can not be opened.

ERRNO_CRIT

[DOS Version]
After a critical error, this integer will hold the device code in the high 16 bits and the error code in the low 16 bits. Normally,

critical errors cause TAWK to abort, so this variable is only useful if you are ignoring critical errors by setting
SIGNAL["SIGCRIT"] to "ignore" or "fail".

[Other Versions]
This variable is ignored.

FILEMODE

This variable contains the fopen-compatible mode that TAWK uses to open files that are opened automatically for reading. See
the fopen() function for a description of valid modes. The default is FILEMODE = "r", which means the files are opened for
reading. To read binary files you could set FILEMODE = "rb". To read shared files you could set FILEMODE = “rdn". The
FILEMODE variable has no effect on the standard input. A fatal error will ensue if FILEMODE is not a valid fopen-compatible

mode or is set to a write-only mode like "w".

FILENAME

Contains the name of the current input file during the Automatic Input Loop. If TAWK is reading from the standard input
FILENAME contains "-". Changing this variable currently has no effect but may have an effect in future versions of TAWK, so it
should be avoided.

FLOATMASK

For experts only. This variable can be used to enable/disable some math error messages, including those generated by the floating
point math coprocessor. The FLOATMASK variable is an integer bit mask. If a bit is set (1), the corresponding error message is
enabled; if it is reset (0), the error message will not appear. The value for FLOATMASK is obtained by adding together the bit

values of all the error messages you want to receive.

The default value of FLOATMASK allows all error messages except "denormalized operand", "underflow", and "precision loss".
The rationale for this is that the "denormalized operand” and "underflow" errors are normally recoverable, and the "precision loss"
error occurs with almost every floating point operation, so these messages are usually of no interest.

FLOATMASK bit meanings.

Error Message Comment Bit
invalid operation Generated by the math processor for Ox1
operations like infinity times 0.
denormalized Generated by the math processor when 0x2
operand an input argument was "denormal”. A

denormal floating point number is one
with an inexact mantissa, and can arise
when a floating point result is too
small to be accurately represented.

-133-

Thompson Automation Software

TAWK Compiler

divide by zero or Self explanatory. Ox4
modulus by zero
overflow or May be generated by the math 0x8
overflow in processor when a result is too large to
conversion of floating be represented, in which case it is
point number to stored as infinity, or when a string
integer being converted to a floating point
number has an exponent too large.
underflow Generated by the math processor when 0x10
a result is too small to be represented,
ie, the exponent is too small. The
result may be "denormal".
precision loss Generated by the math processor fora ~ 0x20
(default: off) rounding error. Most floating point
operations entail small rounding
errors, so this error message is
disabled by default. If enabled, this
message will occur often!
invalid argument atan2(0,0) or log or sqrt of a negative ~ 0x40
number.
argument singularity log(0) 0x80
loss of significance sin, cos, or tan functions inexact result ~ 0x100
(default: off)
total loss of sin, cos, or tan functions invalid result ~ 0x200
significance
too many significant A string being converted to a number ~ 0x400
digits has too many significant digits.
hex number larger A string being converted to a number 0x800

than 8 digits

contains a hexadecimal number with
too many digits. Only 8 hex digits are
allowed for a 32 bit integer.

Examples: To assign a new value to FLOATMASK, for example, to enable all error messages except "precision loss", you could
use the following. The number Oxffdf is the hex representation of a number with all bits set except bit 0x20.

BEGIN { FLOATMASK = Oxffdf }

To change a single bit in FLOATMASK, use the or() and and() functions. For example, to turn off the "hex number larger than 8
digits" message, you could use:

BEGIN { FLOATMASK = and (FLOATMASK,not (0x800)) }

To turn this message back on, you could use:

BEGIN { FLOATMASK = or (FLOATMASK,0x800) }

[UNIX / PC Versions Note]:
Not all of the math processor errors are generated on all systems. Also, an operation that generates an error on one system may

not generate an error on another system. However, floating point operations have been standardized by the IEEE, so the
differences between math processors on the various systems can be ignored by casual users.

134 -

TE T T R S RS e e w000 VOO W P9 DL BT P

e g o

Chapter 18 TAWK Built-In Variables

FNR

This is the number of records that have been read from the current file by the Automatic Input Loop. See also NR, which is the
total number of records read from all files,

FPAT, FS

FPAT and FS specify how TAWK will break the current record ($0) into fields ($1, $2, etc.) The FPAT variable is used to
specify the pattern that the fields must match. The FS variable is used to specify the pattern that the field separator, which is the
space between the fields, must match. Either FS or FPAT may be specified, but not both. The one that is not in use must be
disabled by being set to 0.

Two cases for FPAT are recognized:
1) IfFPAT is set to O (the default value) it is disabled. In this case FS will be used to find the fields instead of FPAT.
2) If FPAT is set to any other value it is the pattern that the fields must match.

Four cases for FS are recognized:
1) IfFSissetto0itis disabled. In this case FPAT will be used to find the fields instead of ES.

2) IfFSisaspace ("") it means that fields are separated by any number of white-space characters (space, tab, form-feed, etc.)
and additionally any leading or trailing white-space characters in the record are ignored.

3) IfFS has any other single character value (for example: "I") then that character is the field separator. Note that each
occurrence of this character separates fields. For example, if the record begins (or ends) with this character it means the first
(or last) field will be an empty string.

4) I FSis aregular expression pattern or a multi-character string, it is the pattern that separates fields in the record.

Examples using FPAT:

In comma-quote files, the fields are separated by commas, but fields may also contain a comma if the entire field is quoted. For
example:

field 1,"field 2, contains a comma",field 3

This can not be handled properly by setting FS = "," because the comma in field 2 would be treated as a field separator. But this
case is easily handled by setting FPAT as below. The FPAT pattern below says that a field either starts with a quote, contains
anything but a quote, and ends with a quote, or that a field consists of anything but a comma or quote.

BEGIN {
FS = 0 # Disable FS
FPAT = /“[A"J*"l[/\/"]*/
}

In some comma-quote files, the quoted fields are themselves allowed to contain quotes. Use the following if quotes are included
by doubling.

Example record: "this is "" a quoted field"
BEGIN {

FS = 0 # Disable FS

FPAT = /" ([~"]]mmy*n|[~, 1%/

}

Use the following if quotes are included by preceding with a backslash:

Example record: “this is \" a quoted field"

BEGIN {

FS =0 # Disable FS

FPAT = /" ([""T[\\")*"|[~,"]*/
}

To make TAWK go back to using FS instead of FPAT, set FPAT = 0.

- 135 -

Thompson Automation Software

TAWK Compiler

FPAT can also be used to tokenize program source files. The following TAWK program tokenizes C program files. This
complete example also handles C comments, which are complicated by the fact that they can continue from one line to the next.

-

These are patterns describing C language tokens:

local eq _tok = /==|l=|<=|>=|<]|>/
local arith_tok = \

NN+ == | > [>> | <<]&& [\ [\ || [-+*/%"~1&]| () {}.,?2:/]/
local assign_tok = />>=|<<=|[-+*/%&"|]1=/

local id_tok = /[a-zA-Z_][a-zA-Z0-9_]1*/

local num_tok = /0[xX][0-9a-fA-F]+|0[0-7]1*]|[0-9]+/
local string_tok = /" ([*"][\\")*"/

local char_tok = /" ([*\\"1]|\\.)"/

local other_tok = /[~ \t\f]/ # Any other character.
local OR = "|*"

BEGIN {
FS = 0 # Disable FS
Set FPAT to recognize C tokens:
FPAT = eqg_tok OR arith_tok OR assign_tok OR \
1d_tok OR string_tok OR char_tok OR \
num_tok OR other_tok

Skip pre-processor statements (they begin with #) /~#/ { next }

If in a multi-line comment look for: "*/*®
The incomment variable is TRUE if we are
in a multi~line comment.
incomment && /*\// {

sub (/" .**\//s,"")

incomment = 0;

3

Skip multi-line comments:
incomment { next }

Delete in-line comments /* like this */
Note s flag on the pattern for shortest match:
{ gsub(/\/*.**\//s,"") }

Look for start of multi-line comment :

IN/N*/ A
sub (/\/*.*$/,"");
incomment = 1;

}

Print out the C tokens, one per line:

{

}
See also: the split() and splitp() functions.

for (i = 1; 1 <= NF; i++) { print $i }

FUNINFO

For Experts Only! This array is used only by the TAWK debugger. It contains information about functions defined in your
TAWK program. The format of the FUNINFO array is described in online documentation included with the TAWK Compiler,
justin case you want to write your own debugger.

-136-

.ﬂxaﬁa,ﬂxmmmmmmmmmﬂmm,mﬁm.mv.m.mmmm

L G - O\ SRy N Y

W R T @ @ @ @ @ @

W WY Wy W W W 9 W W W W W W W W W WY O @ W W @ W W W W W e W W D 0w S w9 W

Chapter 18 TAWK Built-In Variables

MALLOCS

For Experts Only! This variable contains the number of memory allocations used internally by TAWK. It is used to debug
TAWK itself.

MEMAVAIL

[DOS Version]
This variable shows the amount of regular DOS memory still available. This variable is of little use because when regular

memory fills up a compiled program simply starts using extended or expanded memory or disk space. There is currently no easy
way for a TAWK program to determine how much extended and/or expanded memory and/or disk space is left for the program’s
use. When a TAWK program runs another external program using the system() or spawn() function it swaps out most of its data
space, so the MEMAVAIL variable has no bearing on how much memory will be available for the external program (unless
SYSSWAP = 0). EXCEPT: in a combined TAWK/C program created with the aid of a C compiler the MEMAVAIL variable
contains the amount of memory that is available to run an external program using the system() or spawn() functions.

[DOS/32 Version]
MEMAVAIL returns the total amount of memory available, including virtual memory. This can be a very big number.

[OS/2 Version]
MEMAVAIL returns the size of the largest block of real memory available. The total memory available may be much larger than

this. OS/2 may spend some time determining how much memory is available.

[UNIX Versions]
MEMAVAIL returns the total amount of memory available. Calling MEMAVAIL may take time because it forces a complete

flush of all cached memory while determing the amount of memory available. You should probably avoid using MEMAVAIL
under UNIX and just assume you have infinite memory available.

See the release information supplied with your version for possible changes or additional information.

NF

This is the number of fields in the current record ($0). Assignment to NF is permitted: if the new value is less than the old the
extra fields are deleted; if the new value is greater than the old then extra empty fields dre added.

NR

This contains the total number of records that have been processed from all files processed by the Automatic Input Loop. This
number accumulates as files are processed. NR is initially 0. See also FNR.

OFMT

This variable contains the format specification that is used when it is necessary to automatically convert a floating point number
into a string for an output statement such as the print or printf. The format specification is in the same format used by the printf

statement. See the printf statement for a list of valid formats. Note that OFMT affects only floating point numbers, not integers.
The default format is "%.6g". See also: CONVEMT.

This cxample changes the default floating point output format:

BEGIN {
print 1.1 # Prints "1.1"
OFMT = "%.6f"
print 1.1 # Prints "1.10000"
}

-137-

Thompson Automation Software TAWK Compiler

OFSs
This variable is used for two purposes:
1) OFS separates arguments that are output by the print statement.

2) When $0 is reconstructed as a result of assignment to a field or to NF the new value for $0 is created by concatenating the old
fields separated by the value of OFS.

The default value of OFS is a space: " .

The following two statements are identical but the first executes faster:

BEGIN {
print a,b,c
print a OFS b OFS c

ORS

The ORS variable contains the output record separator that is output after every printstatement. The ORS variable is not used by
the printf statement which must include the record separator explicitly.. The default value of ORS is "\n".

OSMODE

This variable indicates the operating system being used. The value of this variable is initialized to one of the values below. Note
that OSMODE indicates the operating system that the program was compiled for, not necessarily the one being used. For
example, a DOS program will always have OSMODE == 0, even if it is run under Windows NT or OS/2.

0 normal DOS, or Windows 3.1;

1 0S/2

2 32-bit extended mode DOS;

3 Win32: either Windows NT or Windows 95;
4 UNIX.

PROGFN, PROGLN

For experts: the PROGFN and PROGLN read-only variables contain, respectively, the source file name and line number of the
currently executing program statement. These may be useful for debugging purposes. For example, you can print this variable at
various places in your program to indicate what line number is being executed. Implementation note: these are not really run-
time variables at all. The actual values for PROGFN and PROGLN are known and substituted at compile time.

PROGTIME, PROGCTIME

For experts: the PROGTIME and PROGCTIME read-only variables contain date the currently executing program statement was
compiled.. PROGTIME is the number of seconds since 1970, and PROGCTIME is a string representing the current date and time.
Simply using PROGCTIME in your program will embed the program compilation time into the executable file. The "strings”
function, supplied with the Thompson Toolkit, can later be used on the executable file to determine when the program was
compiled. Implementation note: these are not really run-time variables at all. The actual values for PROGTIME and
PROGCTIME are known and substituted at compile time.

- 138 -

Lo SR CR = (N . SR -

Chapter 18 TAWK Built-In Variables

PROMPT

This variable contains the prompt that TAWK prints before it reads a record from the terminal. The PROMPT is only printed
when TAWK reads from its standard input, and the standard input is a terminal, and either standard output or error output is also a
terminal. The default PROMPT is "tawk input? ". To suppress the prompt set PROMPT = "" in your BEGIN block.

RAWMODE

[DOS, Win32 and OS/2 Versions]

This variable should not be used unless you are an EXPERT. This discussion applies only to normal TAWK programs that are not
combined TAWK/C programs (i.e., programs created by linking with C code.) See the chapter on Combined TAWK/C programs
for a discussion of how RAWMODE works in a combined TAWK/C program.

The RAMODE variable is an integer whose bottom three bits are binary flags that separately control TAWK end-of-line and
Control-Z processing. Normally RAWMODE = 0 causing TAWK to:

A) stop processing the file whenever a Control-Z is encountered:;
B) translate "\r\n" to "\n" on input;
C) translate "\n" to "\r\n" on output.

RAWMODE may be set to other values as follows:

RAWMODE .
Meaning
value

1 TAWK will not treat Control-Z specially. This bit is
ignored in a combined TAWK/C program, which uses
RAWMODE = 2 to control both input translation and
Control-Z processing.

2 TAWK will not translate "\r\n" to "\n" on input.

4 TAWK will not translate "\n" to "\r\n" on output.

The values of RAWMODE can be combined by adding them together. For example if RAWMODE =7, then all three flags are
enabled and no special processing takes place on either input or output.

RAWMODE has no effect on files that are opened with fopen() using the "t" (text-mode) or "b" (binary-mode) flags.

You should be aware that if RAWMODE is enabled then funny results will ensue when you print to the terminal. For example, if
a line printed to the terminal ends only with "\n" instead of "\\n", then the cursor is not moved to the left hand side of the screen.
Also be aware that when printing to the terminal MS-DOS truncates lines containing a Control-Z character.

Most DOS editors can not edit any part of a file after any Control-Z character in the file. If you allow a file to be created that
contains Control-Z characters and try to edit it you may find that you can edit only the first part of the file.

The implementation of the RAWMODE variable may change in future releases of TAWK.

[UNIX Version]
RAWMODE defaults to 7, that is, no characters are treated specially. However, RAWMODE is implemented, and can be used,
for example, to translate files from UNIX text format to PC text format.

RECLEN

This variable indicates the maximum input record length. The default value is 8000 (DOS) or 32000 (DOS/32 or other verions)
Input records that exceed this maximum length will be split apart. Any left over characters are added to the next record. TAWK
normally translates the "\r\n" sequence used by DOS to indicate end of line into the single character "\n". If the input record is
split exactly between the "\r" and the "\n" this automatic translation may not occur. Also note that RECLEN is the length of the
input record AFTER translating "\r\n" to "\n", so if a record contains "\r\n" sequences its length as a string in TAWK will be less

- 139 -

Thompson Automation Software TAWK Compiler

than the length of the record as it appeared in the file. This can be corrected by preventing such translation with the RAWMODE
variable.

To read in fixed length records you can set the RECLEN variable to the fixed record length and disabling the RS (record
Separator) variable by setting it to 0.

RLENGTH

This variable is set by the match() function. It is the length of the matching string found by the last match() function call. See the
match() function for more information.

RS
This is the record separator that TAWK looks for in input files when it reads in records. There are four possible cases:
1) IfRS =0 then no record separator is recognized. In this case RECLEN specifies the length of the input records.

2) IfRSis any single character, that character is the record separator. The default value for RS is RS = "\n", which causes
records to be individual lines. Note that under DOS and OS/2 lines are terminated by "\r\n" but TAWK normally translates
“\r\n" to "\n" transparently as the line is read in, (See the RAWMODE variable for more information.)

3) RS=""(an empty string), it is identical to RS = "\n\n". This special case was used in older versions of awk to read in
multi-line records. Now RS can be a pattern so this special case is obsolete, but still supported.

4) IfRSisaregular expression or a multiple character string it is the regular expression pattern that describes the record
separator. There are some restrictions on patterns used as a record separator:

1) The RS pattern may not contain the A or $ pattern characters.

2) The RS pattern must not require TAWK to look ahead more than one character in the input stream in order to
determine if the pattern matches or not.

Warning messages are printed if these restrictions are not observed. The first restriction is checked when an assignment is
made to RS. The second is not checked until an input record is encountered that violates the one character look-ahead
restriction. The following examples illustrate the last restriction:

The following example is a legal value for RS:

RS = /alab/

The following example is incorrect because, for example, if the input record is "abc" then TAWK must read the "c" before it
can determine that the record separator was the "a", and then it has to push the "bc" back to the input stream, which is more
than one character of push-back and is illegal.

RS = /alabb/ # This is Not OK!

RSTART

This variable is set by the match() function. It is the starting index of the match found by last match() function call. See the
match() function for more information.

RSM

This variable holds the last input record separator found. It is set whenever a record is read in by the Automatic Input Loop or by
the getline function. RSM is useful when the RS variable contains a pattern, so you can determine what was the actual record
separator that was matched. RSM is also useful if you are processing records so large that their length might exceed the RECLEN
variable, and be split up: if RSM is an empty string (""), it indicates that no record separator was found, either because the end of
file was reached or because the record length reached RECLEN characters.

- 140 -

o . —_

@@&@@@ﬁ@‘ﬁ @@ﬁgéﬁ%‘@"@@%ﬁ@:@@m@au -

Chapter 18

TAWK Built-In Variables

SIGNAL

This variable is an array that specifies how TAWK will respond to signals. Signals are asynchronous events, such as interrupts.
For example, when the user presses the Control-C key, this generates a signal to TAWK. The indicies of the SIGNAL array are
the names of signals that TAWK recognizes. The value of each element in the SIGNAL array is a string that indicates how

TAWK should respond to that specific signal.
Permitted SIGNAL Values

SIGNAL Value

Action

"DEFAULT"

"ABORT"

"IGNORE"
"FAIL"

Any other string

TAWK will take the default action for this signal. The
default action usually causes the TAWK program to abort.

TAWK will abort the program. Note that TERM blocks are
always executed, if possible, even if a program is aborted.

TAWK will ignore the signal, if possible.

A special value allowed only for the "SIGCRIT" signal. See
"SIGCRIT", below.

This value is the name of a TAWK function that TAWK will
call when the signal occurs. When the function returns, your
program will continue from where it left off, unless
otherwise documented below.

- 141 -

Thompson Automation Software TAWK Compiler

SIGNALS Recognized by TAWK
SIGNAL Index Discussion

"SIGINT" User interrupt, typically generated if user presses Control-C.
Occurs in all operating systems. Under DOS, this interrupt is
also generated if the user presses Control-Break.

"BREAK" User pressed Control-Break. Occurs in 0S/2, Win32,

"SIGCRIT" Critical error. Occurs in DOS, 08/2, Win32. The most
common critical errors are file input or output to a non-
existent or locked file. The valid values for this signal are
"DEFAULT", "ABORT", or "FAIL". The "DEFAULT"
value usually causes the operating system to display a pop-up
box when a critical error occurrs, allowing the user to select
“abort, retry, ignore, fail." The "ABORT" value causes the
TAWK program to abort without displaying the pop-up box.
The "FAIL" value causes the operation to fail without
displaying the pop-up box. Any other value is invalid, so you
can not instruct TAWK to cail a function when a critical
error occurs. However, if you set SIGNAL["SIGCRIT"] =
"FAIL", the failure indication will be passed along to your
TAWK program. The ferror() function can be used to see if
an error has occurred on a filename. The ERRNO_CRIT
variable will contain information about the error.

"SIGCLOSE" Window was closed. Occurs in Win32. This signal can not
be ignored. If you provide a handler, TAWK executes the
handler, then TERM blocks, then exits.

"SIGTERM" Software Termination signal. Occurs in UNIX, Win32 and
OS8/2 32 bit versions. This signal is sent when the computer
is being shut down. Your program has only a few seconds to
live. This signal can not be ignored. If you provide a
handler, TAWK executes the handler, then TERM blocks,
then exits.

"SIGHUP" Logoff or hangup. Occurs in UNIX, Win32. In UNIX, this
signal is also sent when the window is closed. In Win32, this
signal can not be ignored. If you provide a handler, TAWK
executes the handler, then TERM blocks, then exits.

"SIGQUIT" User interrupt that generates a core dump if not caught or
ignored. Occurs in UNIX.

The UNIX version may recognize additional signals. To get the complete list, run this program using your UNIX version of
TAWK:

BEGIN { for (i in SIGNAL) print i }

SIGNAL array elements that are not recognized are ignored. Therefore, if you have to run on multiple operating systems, you can
set all the signals you may need, and TAWK will implement only those that make sense on the current operating system.

The following example will print a message whenever the user presses Control-C. To demonstrate this program, add it to a larger
program that actually does something, so you will have a chance to press Control-C while it is running.

function myhandler () {
print "ha ha, you cant exit"®

BEGIN { SIGNAL["SIGINT"] = "myhandler"; }

-142-

-v_wwvwwwrwmwwwwvwwwwwwwww\w

Chapter 18 TAWK Built-In Variables

The following example demonstrates one way to test if a disk is in a floppy drive, without intervention of the operating system.

BEGIN {
SIGNAL["SIGCRIT"] = "FAIL"
if (! chdir("A:")) print "no floppy in drive A:"
SIGNAL["SIGCRIT"] = "DEFAULT"

}

See also: ERRNO_CRIT variable for additional information on SIGCRIT; FLOATMASK variable to control floating point
exceptions; the discussion of TERM blocks in chapter 3. If all you want to do is perform some action no matter how your
program ends, it is safer and easier to use a TERM block than to install signal handlers.

SORTTYPE

SORTTYPE controls the automatic sorting of arrays that are accessed with the "for (variable in array)" construct. The possible
values you may assign to SORTTYPE are:

SORTTYPE Value Meaning

SORTTYPE=0 No automatic sorting; the array elements will be
accessed in a semi-random order.

SORTTYPE=1 Alphanumeric sorting; numeric indicies are sorted

(default value) numerically and alphabetic indicies are sorted

alphabetically. Only integer and fixed point notation
(eg: 1.9 or 0.007) are sorted numerically. Exponential
notation (eg: 1e10) is not recognized by the sorting
routine.

SORTTYPE=2 Alphabetic sorting using ASCII collating sequence.

You can affect the sort order by adding any of the following values to SORTTYPE:

SORTTYPE Value Meaning
Add 4 Upper and lower case letters will be sorted together.

If entries differ only in case the upper-case entry will
come first. The standard English character set is used
to determine the case of letters.

Add 8 The sorting order is reversed. If you are not sorting,
this has no effect, i.e., SORTTYPE = 8 is the same as
SORTTYPE = 0.

Add 16 Ignore fractions. This option allows you to sort things

like: "fig 1.9" and "fig 1.10" in the intuitive manner.
Otherwise the 1.9 and 1.10 are treated as fractions, so
"1.10" comes before "1.9".

Add 32 Leading zeros are treated as a significant part of the
number. For example, if SORTTYPE = 33, the
numbers would be sorted: 1, 2, 01, 02, rather than: 1,
01,2, 02.

For example, SORTTYPE = 2 selects alphabetic sorting, SORTTYPE = 6 sclects case-insensitive alphabetic sorting, and
SORTTYPE = 14 selects reversed alphabetic case-insensitive sorting.

The value of SORTTYPE is used once each time a for loop is encountered. If you want to use different sort orders in different
places in the same program, you should set SORTTYPE immediately before each for loop. The following example shows how to
use nested for loops that use different sort types:

- 143 -

Thompson Automation Software TAWK Compiler

END {
SORTTYPE = 2
arrayl will be sorted alphabetically

for (i in arrayl) {
SORTTYPE = 10
array2 will be sorted in reverse

for (j in array?2) {

i

Sorting arrays is time consuming. If the size of the array exceeds available real memory the sorting operation will slow down
drastically. SORTTYPE = 0 can be used to speed up a for loop if sorting is not required.

See the chapter on arrays for sorting examples.

stdin, stdout, stderr

These pre-defined variables represent the standard-input, the standard-output, and the standard-error-output when your TAWK
program is executed. By default they are connected to the user’s console but they can also be redirected when the program is
invoked using the < and > symbols in the command line. (Standard-error can not normally be redirected under DOS unless you

use an enhanced shell like the Thompson Toolkit.)

For example, to print a message to the standard-error-output, use:

BEGIN { print "a message" > stderr }

To read 512 bytes from the standard-input you could use:

BEGIN { buf = fread(512,stdin) }

Do not confuse stdin with the keyboard. Standard-input normally comes from the keyboard but if the standard-input for the
program is redirected it comes from the specified file. If you want to read from the keyboard you can either use the getkey()
function, or you can read directly from the device driver using the special filename "CON" under DOS or OS2 or "/dev/tty" under
UNIX. This special filename always stands for Console and can not be redirected. For example, to read a line of input from the

keyboard regardless of file input redirections, you can use:
getline msg < "CON" # DOS, 0S/2 versions getline msg < "/dev/tty" # UNIX
version

Similarly for stdout and stderr: these normally go to the user’s console but they can be redirected. To write to the terminal
regardless of file output redirection you can use:

print "a message" > "CON" # DOS, 0S/2 versions
print "a message" > "/dev/tty" # UNIX version

STACKAVAIL

STACKAVAIL is the number of bytes of stack left. It is provided for your interest only. The initial stack size is set to a very high
value (12000 bytes even under DOS). If you get a “‘stack overflow” message, it usually means that you have a runaway function

recursion problem.

SUBSEP

This variable is used as part of an old method to simulate multi-dimensional arrays using one dimensional arrays. TAWK
provides true multi-dimensional arrays so this is obsolete, but it is still supported for backward compatibility. See the chapter on

Arrays for a full description.

- 144 -

@@@%@@@@@@@@@@@%@ﬁ@@@@@@@W@@@@@@@mm@mﬁmmm&

Chapter 18 TAWK Built-In Variables

SYMINFO

For Experts Only! This array is used only by the TAWK debugger. It contains information about variables defined in your
TAWK program. The format of the SYMINFO array is described in online documentation included with the TAWK Compiler,
just in case you want to write your own debugger.

SYSSWAP

[DOS Version Only]
Under DOS, this variable controls whether TAWK programs will swap out their data space before executing another program
using the system() or spawn() functions. This variable is used only in the normal DOS version of TAWK, not in the DOS/32 or

other versions.
Under DOS, TAWK swaps out its data space to make more room in memory for the executed program. Without swapping, most

large TAWK programs would not be able to run other programs at all. By default, the SYSSWAP variable is non-zero, causing
swapping to occur. Setting SYSSWAP=0 suppresses swapping. There are several possible reasons to suppress swapping:

1) To conserve EMS/XMS memory for use by the program you want to run;

2) To run programs that must remain resident. If a resident program is loaded on top of a TAWK program that is swapped out,
the TAWK program immediately terminates with an indignant error message;

3) To run programs requiring too much environment space. Before the TAWK program swaps itself out, it copies the
environment for the program to be called to its own stack space in order to save it in a safe place. However, there may be
insufficient space on the stack to hold the environment, in which case the environment will be truncated. If TAWK does not
swap out, the limit on the environment size is much larger.

4) If the user of the compiled TAWK program does not have enough EMS or XMS memory or disk space to perform the
swapping operation, the system() or spawn() call will fail.

In combined TAWK/C programs, swapping is normally disabled unless specifically enabled by setting the awk_xmalloc variable

in your C code. Memory allocation and swapping in combined TAWK/C programs is an involved subject discussed in the chapter

on combined TAWK/C programs.

TMPDIR

This variable specifies the directory where the TAWK program will create temporary files. It is initialized to the value of the
TMP environment variable, if any. TAWK does not create temporary files until it needs them. If you change TMPDIR before
TAWK creates a temporary file TAWK will use the new directory that you specify. Make sure you set TMPDIR to a valid
directory path.

[DOS Versions]

Under DOS TAWK performs its own virtual memory management using a temporary paging file created in this directory.
Therefore you may be able to use more memory in your TAWK program if you set this variable to a directory on a disk that has at
least 16 Mb of free disk space. You may also be able to make very large TAWXK programs run faster under DOS if you set this
variable to a RAM-DISK. However, you are always better off letting TAWK use the memory directly as XMS or EMS memory
than indirectly via a RAM-DISK.

VENDOR

This variable contains the value "Thompson Automation”.

VERSION

This contains the current TAWK version number as a string, for example, "5.0".

- 145 -

Thompson Automation Software TAWK Compiler

WARNINGS

This variable controls warnings printed by your TAWK program.
WARNINGS = 0 disables all warning and note messages.
WARNINGS = 1 enables general warning messages;
WARNINGS = 2 enables math warning messages;
WARNINGS =4 enables note messages. "Note" messages are like "Warnings" but are not as serious.

You can add the various values above to individually enable different types of warnings. The default value of the WARNINGS
variable is 7 (all warning and note messages enabled) unless the —w option was specified to your TAWK program, in which case
WARNINGS=0.

See also: FLOATMASK variable.

XMSLIMIT, EMSLIMIT
and XMSRESIZE

[DOS Version Only]
Under DOS, TAWK programs use memory in the following order:

1) Regular memory (typically below 640K) first:
2) Extended memory (up to XMSLIMIT);

3) Expanded memory (up to EMSLIMIT);

4) Disk temporary file.

Extended memory is memory above 1 Megabyte when running under DOS. In order for a TAWK program to use extended
memory, an extended memory manager such as Microsoft's HIMEM.SYS must be installed first. Expanded memory is a different
type of memory and may be provided by an expanded memory manager in a 386-based computer or by an add-in memory card in
any computer.

Normally you do not need to worry about XMSLIMIT and EMSLIMIT: TAWK programs automatically check for the presence
of extended or expanded memory and use it if available. The default values of XMSLIMIT and EMSLIMIT allow compiled
TAWK programs to use all available extended and/or expanded memory.

However, if your TAWK program needs to call another program that needs extended or expanded memory, you may set
XMSLIMIT to specify the maximum number of Kbytes of extended memory that the compiled TAWK program may use, and/or
EMSLIMIT to specify the maximum number of Kbytes of expanded memory that the TAWK program may use. For example, if
XMSLIMIT=0 then no extended memory will be used, and the TAWK program will not even check for the existence of extended
memory. If XMSLIMIT=320 then a maximum of 320 Kbytes of extended memory will be used.

By default, when TAWK needs XMS memory, it allocates it all. If you set XMSRESIZE = 1, TAWK will only allocate as much
as it needs, and will reallocate more as it needs it, up to the limit specified by XMSLIMIT. This variable might be useful if you
are calling, from TAWK, a program that needs to use XMS memory. Unfortunately, some popular XMS memory managers
contain bugs that can crash your computer if this feature is used. Thompson Automation can not provide you with a list of
memory managers that do, or do not, work. Therefore, we recommend that you use this variable only if you absolutely need it,
and only with caution, and only on your own computer. We strongly recommend that you do NOT use this variable at all in any
software that you ship to your customers.

[DOS/32, Win32, OS/2 or UNIX Versions]
TAWK programs compiled for these systems use the virtual memory capabilities provided by the underlying operating system or
DOS extender, and the XMSLIMIT and EMSLIMIT variables are i gnored.

- 146 -

W G S QP W W W WP A W W W Ay oy o opy ope W W W W W WY W WY @ W

-

Appendix 1: Details of Number Representation

Appendix 1:

TAWK stores numbers internally either as 32 bit integers or as double precision floating point numbers, whichever is appropriate.
Integers are used whenever possible because integer calculations are much faster than floating point calculations. However, a
number that js entered with a decimal point or using scientific notation is stored as a floating point number, even if it could be
stored as an integer. A feature of TAWK is that when an integer calculation over-flows during an arithmetic calculation, TAWK
automatically recalculates the result using floating point calculations and stores the correct result as a floating point number. On
IBM compatible computers, numbers in TAWK have 15 significant decimal digits and may fall in the range 1e-307 to 1e308.
TAWK automatically uses a floating point co-processor if one is present in the computer; otherwise floating point operations are

performed by software subroutines.

The 32 bit signed integers used by TAWK have a range from -2147483648 to 2147483647. Numbers entered in hexadecimal
notation are stored directly as 32 bit signed integers. Therefore, when used in a signed arithmetic context (such as addition)
hexadecimal numbers in the range 0x0 to Ox7f{fffff represent positive numbers in the range 0 to 2147483647, and hexadecimal
numbers in the range 0x80000000 to Oxffffffff represent negative numbers in the range -2147483648 to -1. The reason for this is
that TAWK considers the integers used in arithmetic contexts to be signed quantities. In a 32-bit signed quantity, the top bit is the
sign bit. Hexadecimal numbers larger than Ox7fffffff (which is 2231 - 1) have the upper most bit set, so they act like negative
numbers when used in an arithmetic context. Normally, you would never notice this, because hex numbers are typically not used
in arithmetic contexts; they are usually used in logical contexts such as the bitwise manipulation functions: and, or, etc. Consider
the following two statements that have the same effect:

xor (y,~1)

xor (y,Oxffffffff)

The sprintf, pack and unpack functions allow you to specify whether a value is to be treated as a signed or unsigned quantity. An
interesting problem arises when a 32 bit unsigned integer larger than 2147483647 is converted to a number. To accurately
preserve the sign and value of the number, TAWK stores these numbers as floating point numbers.

X
X

o

For mathematical completeness, we will here present how to convert a 32-bit unsigned integer to a signed floating point number.
Since TAWK considers all integers to be signed integers, some deviousness is required. The following program determines what
value a negative 32 bit signed integer would have if it were treated as an unsigned quantity. The converted value will be a positive

number stored as floating point if necessary.

This prints: signed = -1 unsigned = 4.29497e+9
BEGIN {

val = Oxffffffff

uval = 0 + sprintf ("%u", wval)

print "signed =", wval, "unsigned =", uval
}

This works too:

BEGIN {
val = OxfEfffffff
Use pack and unpack to convert
from signed to unsigned.
unpack ("@L" ,pack ("@L",val), x)
print "signed =", wval, "unsigned =", x[1]

}

Round-Off Error Suppression

TAWK goes to some effort to suppress round off errors. Consider the following program:

BEGIN {
x1 = 1.23;
x2 = 1.0 + .23;
printf ("%g\n",x2 - x1);
if (x1 == x2) printf("equal\n");
else printf ("not equal\n");

- 147 -

Thompson Automation Software TAWK Compiler

Results In:
TAWK Other Language
0 2.77556e-017
equal not equal

The reason this fails in most other languages (including C, C++ and all UNIX versions of AWK) is that floating point calculations
almost always result in some round off error, so when two numbers calculated two different ways are compared they are usually
not quite the same.

In TAWK, the number of significant digits specified when a number is entered is saved with the number. This information is
preserved across addition, subtraction, multiplication, and division by an exact multiple of 2 or 10. Then when numbers are
compared, only the significant digits participate. If a result is zero within the significant digits supplied with the number, then it is
considered a true zero instead of a teeny tiny number.

Note that the results of non-trivial division or modulus and the results of all transcendental functions are treated as though all result
digits are significant, so they do not benefit from TAWK’s round off error suppression. For example, the following example
usually prints a teeny tiny number rather than zero:

print ((1.0/.1 + .23/.1) - 1.23/.1)

- 148 -

UET Iy s

e g

R ol

Appendix 2: Compatibility with AWK

Appendix 2: Compatibility with AWK

There are a few minor conflicts between the "The AWK Programming Language" book (which is the primary reference for the
AWK language), the POSIX extensions to AWK, and existing implementations of AWK on UNIX systems. These are described

here.

Common AWK Incompatibilities:

1) Backslashes in Strings: Unfortunately, there are a few UNIX versions of awk that interpret backslashes in strings incorrectly.
TAWK can interpret backslashes either way. See the TAWK -eb option in the TAWK Compiler chapter for a complete

discussion.

2) Reserved names: TAWK has more built in functions and variables than other versions of awk. The names of built in functions
and variables are reserved. If an AWK program ported from UNIX uses any reserved names, you will have to change the names
in the AWK program before it can be run using TAWK.

3) Function Evaluation: TAWK evaluates function arguments from right to left. While the order of evaluation is unspecified in
the AWK book, most other versions of AWK evaluate function arguments from left to right. TAWK uses right to left evaluation
to make it easier to link to C libraries and call C functions directly from TAWK, because C also uses right to left evaluation.

4) Regular expressions: The relative precedence of the anchoring operators (* and $) and the alternation operator (1) is different in
some versions of AWK. Thus the regular expression:
“a|bs

In TAWK and most versions of awk means:

(~a) | (b$)

But in non-conforming versions of awk might mean:

~(al|b)s
5) Assignment: TAWK evaluates the right-hand side of the assignment first, which is C compatible. Some other AWXKSs evaluate
the left-hand side of an assignment first. For example:

x = 1
line[x] = line[x++]

In TAWK results in:

line[2] = line[1)

But in some other AWKs the left hand side (line[x]) is evaluated first resulting in:

line{l] = line[1]
6) sub and gsub functions.

The original POSIX standard seemed to imply that the replacement string specified to the sub and gsub functions must undergo an
additional Ievel of backslash interpretation. A subsequent clarification by the POSIX committee members corrected this. As a
result, different AWK implementations of sub and gsub work different ways, and all can claim to be correct. TAWK is
compatible with the latest POSIX interpretation, which is also compatible with all older versions of AWK. But TAWK also
recognizes the $n construct in the replacement string of the sub and gsub functions, while other AWKs do not. The result is that
calls to sub and gsub are not 100% portable between different versions of AWK.

- 149 -

Thompson Automation Software TAWK Compiler

Index to Functions and Variables
flock function, 97, 98, 100

abort function, 12, 14, 15, 24, 86, 93 FNR variable, 10, 11, 15, 22, 101, 102, 135

addressof function, 86, 87, 104, 128 fopen function, 31, 82, 84, 85, 90, 94, 95,97, 99, 100, 128 §
and function, 32, 87 FPAT variable, 8, 48, 49, 120, 135)
ARGC variable, 15, 16, 17, 23, 131 fread function, 23, 99, 100 ¢
argcount function, 34, 88 FS variable, 8, 48, 49, 119, 135 i
ARGI variable, 15, 17, 23, 55, 131 fseek function, 11, 94, 97, 100)
ARGV variable, 15, 16, 17, 18, 23, 55, 64, 66, 67, 82, 131 ftell function, 100 ¢
argval function, 88 FUNINFO variable, 136 i
atan2 function, 35, 36, 88 funlock function, 97, 98, 100

fwrite function, 100

BUFSIZE variable, 131
getawkvar function, 100

call function, 88 getcwd function, 101

calla function, 88 getkey function, 24, 101, 104, 144

char function, 88, 105 getline function, 19, 21, 22, 23, 24, 90, 95, 99, 101, 140,
chdir function, 86, 89 144

chmod function, 89 gsub function, 5, 53, 54, 123, 125, 136, 149
chsize function, 90 gsubs function, 123

close function, 14, 18, 21, 24, 86, 90, 95, 102

convertnum function, 91 index function, 87, 103

CONVEMT variable, 27, 131 inp function, 103

cos function, 35, 91 inpw function, 103

ctime function, 91 int function, 27, 103

interrupt function, 85, 86, 87, 103
debug_function function, 91

debug_get_frame function, 91 kbhit function, 24, 101, 104
debug_get_stack_var function, 91

debug_set_stack_var function, 91 length function, 17, 57, 104
dirlist function, 92 log function, 104

DLLS variable, 132
MALLOCS variable, 137

EMSLIMIT variable, 146 match function, 33, 49, 53, 54, 55, 104, 125, 140
ENV variable, 132 MEMAVAIL variable, 137
ENVIRON variable, 119, 125, 132 mkdir function, 105
ERRNO variable, 132
ERRNO_CRIT variable, 133 NF variable, 11, 22, 46, 48, 50, 101, 136, 137, 138
ERRNO_OS variable, 133 not function, 32, 87
exit function, 11, 12, 14, 15, 92, 93 NR variable, 12, 22, 43, 44, 50, 101, 102, 137
exp function, 93
OFMT variable, 27, 131, 137
fdopen function, 93 OFS variable, 19, 48, 49, 109, 138
feof function, 94 or function, 32, 87
ferror function, 94 ord function, 105, 109
fflush function, 85, 94 ORS variable, 19, 20, 109, 138
filemode function, 94 OSMODE variable, 104, 138
FILEMODE variable, 133 outp function, 105
FILENAME variable, 11, 14,18, 133 outpw function, 105
fileno function, 84, 85, 95
filesize function, 96 pack function, 49, 77, 87, 106, 128, 147
filetime function, 91, 96, 126 baste function, 108
findfirst function, 96, 97 peek function, 87, 108
findnext function, 96 poke function, 109

FLOATMASK variable, 133

-150-

11‘;:

'Ww«r’w’WWWWWWW’WWWWWWWWWWWW%W%W@WWwww%ww%www

&

Index to Functions and Variables

print function, 3, 10, 11, 12, 13, 19, 20, 21, 22, 23, 24, 36,
49, 87, 90, 99, 109, 131, 137, 138

printf function, 19, 20, 21, 24, 87,99, 110, 121, 131, 137,
147

PROGCTIME variable, 138

PROGEN variable, 138

PROGLN variable, 138

PROGTIME variable, 138

PROMPT variable, 139

rand function, 114, 121

RAWMODE variable, 82, 97, 98, 100, 139, 140
RECLEN variable, 23, 102, 139, 140
regex function, 52, 55,57, 114
registercallback function, 114

rename function, 114

rindex function, 115

RLENGTH variable, 33, 53, 104, 125, 140
rmdir function, 115

rmfile function, 115

RS variable, 23, 102, 140

RSM variable, 23, 140

RSTART variable, 33, 104, 125, 140

scr_end function, 115
scr_gecm function, 116
scr_gep function, 116
scr_get function, 116
scr_getcells function, 116
scr_put function, 116
scr_putcells function, 117
scr_scm function, 117
scr_scp function, 115, 117
setawkvar function, 118
shiftl function, 118

shiftr function, 86, 118
SIGNAL, 12

SIGNAL variable, 141

sin function, 35, 118
sleep function, 118
SORTTYPE variable, 42, 43, 143

-151-

spawn, 99

spawn function, 83, 94, 119, 125, 132, 137, 145
split function, 31, 49, 114, 119, 120
splitp function, 31, 49, 120

sprintf function, 109, 121, 147

sqrt function, 55, 121

srand function, 114, 121
STACKAVAIL variable, 144

stat function, 121

stderr variable, 11, 84, 85, 144

stdin variable, 84, 853, 144

stdout variable, 84, 85, 144

strdup function, 123

sub function, 53, 54, 114, 123, 136, 149
subs function, 123

SUBSEP variable, 47, 144

substr function, 43, 124

SYMINFO variable, 145

SYSSWAP variable, 137, 145

system, 99

system function, 83, 94, 119, 125, 132, 137, 145

time function, 126

timetab function, 126
TMPDIR variable, 70, 145
tolower function, 29, 127
toupper function, 29, 127
translate function, 43, 44, 127
typeof function, 128

unpack function, 49, 87, 106, 128, 147
unregistercallback function, 130

VENDOR variable, 145
VERSION variable, 145

WARNINGS variable, 68, 146

XMSLIMIT variable, 146
xor function, 32, 87, 147

